Advertisements
Advertisements
प्रश्न
A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away, 36 minutes before the goods train. Assuming that the speeds of both the train remain constant between the two stations; calculate their speeds.
उत्तर
Let the speed of goods train be x km/hr.
So, the speed of express train will be (x + 20) km/hr.
Distance = 1040 km
We know
Time = `"Distance"/"Speed"`
Time taken by good train to cover a distance of 1040 km = `1040/x` hrs
Time taken by express train to cover a distance of 1040 km = `1040/(x + 20)` hrs
It is given that the express train arrives at a station 36 minutes before the goods train. Also the express train leaves the station 2 hours after the goods train. This means that the express train arrives at the station `(36/60 + 2) "hrs" = 13/5 "hrs"` before the good train.
Therefore, we have
`1040/x - 1040/(x + 20) = 13/5`
`(1040x + 20800 - 1040x)/(x(x + 20)) = 13/5`
`20800/(x^2 + 20x) = 13/5`
`1600/(x^2 + 20x) = 1/5`
x2 + 20x – 8000 = 0
(x – 80)(x + 100) = 0
x = 80, –100
Since, the speed cannot be negative.
So, x = 80.
Thus, the speed of goods train is 80 km/hr and the speed of express train is 100 km/hr.
APPEARS IN
संबंधित प्रश्न
The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr.
- Find the time taken by each train to cover 300 km.
- If the ordinary train takes 2 hrs more than the express train; calculate speed of the express train.
If the speed of an aeroplane is reduced by 40 km/hr, it takes 20 minutes more to cover 1200 km. Find the speed of the aeroplane.
A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr. If she takes 2 hrs 30 minutes to cover the whole distance, find ‘x’.
The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car. Calculate:
- the time taken by the car to reach town B from A, in terms of x;
- the time taken by the train to reach town B from A, in terms of x.
- If the train takes 2 hours less than the car, to reach town B, obtain an equation in x and solve it.
- Hence, find the speed of the train.
A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.
Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels 5 km/hr faster than the second train. If after 2 hours, they are 50 km apart, find the speed of each train.
Some school children went on an excursion by a bus to a picnic spot at a distance of 300 km. While returning, it was raining and the bus had to reduce its speed by 5 km/hr and it took two hours longer for returning. Find the time taken to return.
An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:
- the onward journey;
- the return journey.
If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value.
A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.
The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.