हिंदी

The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car - Mathematics

Advertisements
Advertisements

प्रश्न

The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car. Calculate:

  1. the time taken by the car to reach town B from A, in terms of x;
  2. the time taken by the train to reach town B from A, in terms of x.
  3. If the train takes 2 hours less than the car, to reach town B, obtain an equation in x and solve it.
  4. Hence, find the speed of the train.
योग

उत्तर

Speed of car = x km/hr

Speed of train = (x + 16) km/hr

i. We know: Time = `"Distance"/"Speed"`

Time taken by the car to reach town B From A = `216/x` hrs

ii. Time taken by the train to reach town B from A = `208/(x + 16)` hrs

iii. From the given information,

`216/x - 208/(x + 16) = 2`

`(216x + 3456 - 208x)/(x(x + 16)) = 2`

`(8x + 3456)/(x(x + 16)) = 2`

4x + 1728 = x2 + 16x

x2 + 12x – 1728 = 0

x2 + 48x – 36x – 1728 = 0

x(x + 48) – 36(x + 48) = 0

(x + 48)(x – 36) = 0

x = – 48, 36

But, speed cannot be negative. 

So, x = 36.

iv. Speed of train = (36 + 16) km/hr = 52 km/hr.

shaalaa.com
Problems Based on Distance, Speed and Time
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (E) [पृष्ठ ७८]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (E) | Q 1 | पृष्ठ ७८
एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 5 Quadratic Equations in One Variable
Exercise 5.5 | Q 29

संबंधित प्रश्न

The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr.

  1. Find the time taken by each train to cover 300 km.
  2. If the ordinary train takes 2 hrs more than the express train; calculate speed of the express train.

If the speed of an aeroplane is reduced by 40 km/hr, it takes 20 minutes more to cover 1200 km. Find the speed of the aeroplane.


A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr. If she takes 2 hrs 30 minutes to cover the whole distance, find ‘x’.


A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away, 36 minutes before the goods train. Assuming that the speeds of both the train remain constant between the two stations; calculate their speeds.


A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels 5 km/hr faster than the second train. If after 2 hours, they are 50 km apart, find the speed of each train.


A bus covers a distance of 240 km at a uniform speed. Due to heavy rain its speed gets reduced by 10 km/h and as such it takes two hrs longer to cover the total distance. Assuming the uniform speed to be 'x' km/h, form an equation and solve it to evaluate 'x'.


A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.


The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.


A car is moving with a speed of 100 km/h. If the speed of car first increases by x% and then decreases by x%, the final speed of the car is 96 km/h. The value of x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×