English

The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car - Mathematics

Advertisements
Advertisements

Question

The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car. Calculate:

  1. the time taken by the car to reach town B from A, in terms of x;
  2. the time taken by the train to reach town B from A, in terms of x.
  3. If the train takes 2 hours less than the car, to reach town B, obtain an equation in x and solve it.
  4. Hence, find the speed of the train.
Sum

Solution

Speed of car = x km/hr

Speed of train = (x + 16) km/hr

i. We know: Time = `"Distance"/"Speed"`

Time taken by the car to reach town B From A = `216/x` hrs

ii. Time taken by the train to reach town B from A = `208/(x + 16)` hrs

iii. From the given information,

`216/x - 208/(x + 16) = 2`

`(216x + 3456 - 208x)/(x(x + 16)) = 2`

`(8x + 3456)/(x(x + 16)) = 2`

4x + 1728 = x2 + 16x

x2 + 12x – 1728 = 0

x2 + 48x – 36x – 1728 = 0

x(x + 48) – 36(x + 48) = 0

(x + 48)(x – 36) = 0

x = – 48, 36

But, speed cannot be negative. 

So, x = 36.

iv. Speed of train = (36 + 16) km/hr = 52 km/hr.

shaalaa.com
Problems Based on Distance, Speed and Time
  Is there an error in this question or solution?
Chapter 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (E) [Page 78]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (E) | Q 1 | Page 78
ML Aggarwal Understanding ICSE Mathematics [English] Class 10
Chapter 5 Quadratic Equations in One Variable
Exercise 5.5 | Q 29

RELATED QUESTIONS

If the speed of a car is increased by 10 km per hr, it takes 18 minutes less to cover a distance of 36 km. Find the speed of the car.


If the speed of an aeroplane is reduced by 40 km/hr, it takes 20 minutes more to cover 1200 km. Find the speed of the aeroplane.


A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr. If she takes 2 hrs 30 minutes to cover the whole distance, find ‘x’.


A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away, 36 minutes before the goods train. Assuming that the speeds of both the train remain constant between the two stations; calculate their speeds.


A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels 5 km/hr faster than the second train. If after 2 hours, they are 50 km apart, find the speed of each train.


A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.


The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.


The speed of train A is x km/h and speed of train B is (x – 5) km/h. How much time will each train take to cover 400 km?


A car is moving with a speed of 100 km/h. If the speed of car first increases by x% and then decreases by x%, the final speed of the car is 96 km/h. The value of x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×