मराठी

A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away - Mathematics

Advertisements
Advertisements

प्रश्न

A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away, 36 minutes before the goods train. Assuming that the speeds of both the train remain constant between the two stations; calculate their speeds.

बेरीज

उत्तर

Let the speed of goods train be x km/hr.

So, the speed of express train will be (x + 20) km/hr.

Distance = 1040 km

We know

Time = `"Distance"/"Speed"`

Time taken by good train to cover a distance of 1040 km = `1040/x` hrs

Time taken by express train to cover a distance of 1040 km = `1040/(x + 20)` hrs

It is given that the express train arrives at a station 36 minutes before the goods train. Also the express train leaves the station 2 hours after the goods train. This means that the express train arrives at the station `(36/60 + 2) "hrs" = 13/5 "hrs"` before the good train.

Therefore, we have

`1040/x - 1040/(x + 20) = 13/5`

`(1040x + 20800 - 1040x)/(x(x + 20)) = 13/5`

`20800/(x^2 + 20x) = 13/5`

`1600/(x^2 + 20x) = 1/5`

x2 + 20x – 8000 = 0

(x – 80)(x + 100) = 0

x = 80, –100

Since, the speed cannot be negative.

So, x = 80.

Thus, the speed of goods train is 80 km/hr and the speed of express train is 100 km/hr.

shaalaa.com
Problems Based on Distance, Speed and Time
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (C) [पृष्ठ ७३]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (C) | Q 7 | पृष्ठ ७३

संबंधित प्रश्‍न

A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.


If the speed of a car is increased by 10 km per hr, it takes 18 minutes less to cover a distance of 36 km. Find the speed of the car.


A girl goes to her friend’s house, which is at a distance of 12 km. She covers half of the distance at a speed of x km/hr and the remaining distance at a speed of (x + 2) km/hr. If she takes 2 hrs 30 minutes to cover the whole distance, find ‘x’.


A bus covers a distance of 240 km at a uniform speed. Due to heavy rain its speed gets reduced by 10 km/h and as such it takes two hrs longer to cover the total distance. Assuming the uniform speed to be 'x' km/h, form an equation and solve it to evaluate 'x'.


A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.


A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.


The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.


The speed of train A is x km/h and speed of train B is (x – 5) km/h. How much time will each train take to cover 400 km?


A car is moving with a speed of 100 km/h. If the speed of car first increases by x% and then decreases by x%, the final speed of the car is 96 km/h. The value of x is ______.


The speed of a boat in still water is 15 km/h and speed of stream is 5 km/h. The boat goes x km downstream and then returns back to the point of start is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×