हिंदी

A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07Suppose A = {e1, e5 - Mathematics

Advertisements
Advertisements

प्रश्न

A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate `P(barB)` from P (B), also calculate `P(barB)` directly from the elementary outcomes of `barB`

योग

उत्तर

Given that: S = {e1, e2, e3, e4, e5, e6, e7, e8, e9}

A = {e1, e5, e8} and B = {e2, e5, e8, e9}

P(e1) = P(e2) = 0.08

P(e3) = P(e4) = P(e5) = 0.1

P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07

`P(barB)` = 1 – P(B)

= 1 – 0.32

= 0.68

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Probability - Exercise [पृष्ठ २९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 16 Probability
Exercise | Q 16.(d) | पृष्ठ २९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A die is thrown. Describe the following events:

  1. A: a number less than 7
  2. B: a number greater than 7
  3. C: a multiple of 3
  4. D: a number less than 4
  5. E: an even number greater than 4
  6. F: a number not less than 3

Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F', F'


In a single throw of a die describe the event:

A = Getting a number less than 7


In a single throw of a die describe the event:

 C = Getting a multiple of 3


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find  
P (A ∩  \[\bar{ B } \] )


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?


If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?


An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or complex


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is choosen at random. Next a ball is randomly chosen from the urn. Then a second ball is choosen at random from the same urn without replacing the first ball. What is the probability that two balls of opposite colour are choosen?


A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate P(A), P(B), and P(A ∩ B)


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by adding the probabilities of the elementary outcomes.


Determine the probability p, for the following events.
An odd number appears in a single toss of a fair die.


Determine the probability p, for the following events. 
At least one head appears in two tosses of a fair coin.


Determine the probability p, for the following events. 
A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well-shuffled ordinary deck of 52 cards.


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.


The probability of intersection of two events A and B is always less than or equal to those favourable to the event A.


If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×