Advertisements
Advertisements
प्रश्न
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate `P(barB)` from P (B), also calculate `P(barB)` directly from the elementary outcomes of `barB`
उत्तर
Given that: S = {e1, e2, e3, e4, e5, e6, e7, e8, e9}
A = {e1, e5, e8} and B = {e2, e5, e8, e9}
P(e1) = P(e2) = 0.08
P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
`P(barB)` = 1 – P(B)
= 1 – 0.32
= 0.68
APPEARS IN
संबंधित प्रश्न
Three coins are tossed once. Let A denote the event "three heads show", B denote the event "two heads and one tail show". C denote the event "three tails show" and D denote the event "a head shows on the first coin". Which events are
- mutually exclusive?
- simple?
- compound?
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
Describe the events
- A'
- not B
- A or B
- A and B
- A but not C
- B or C
- B and C
- A ∩ B' ∩ C'
In a single throw of a die describe the event:
D = Getting a number less than 4
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∩ \[\bar{ B } \] )
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (B ∩ \[\bar{ A } \] )
One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?
If three dice are throw simultaneously, then the probability of getting a score of 5 is
Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?
If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?
An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or complex
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?
A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate P(A), P(B), and P(A ∩ B)
Determine the probability p, for the following events.
An odd number appears in a single toss of a fair die.
Determine the probability p, for the following events.
At least one head appears in two tosses of a fair coin.
Determine the probability p, for the following events.
The sum of 6 appears in a single toss of a pair of fair dice.
If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.
If M and N are any two events, the probability that at least one of them occurs is ______.
The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4
Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.
If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.