हिंदी

A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right. - Physics

Advertisements
Advertisements

प्रश्न

A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.

  1. The wave is travelling from right to left.
  2. The speed of the wave is 20 m/s.
  3. Frequency of the wave is 5.7 Hz.
  4. The least distance between two successive crests in the wave is 2.5 cm.
टिप्पणी लिखिए

उत्तर

a, b and c

Explanation:

The general equation of a plane progressive wave with initial phase is

Various forms of the progressive wave function:

  • `y = a sin (ωt - kx)`
  • `y = a sin (ωt - (2π)/λ x)`
  • `y = a sin 2π [t/T - x/λ]`
  • `y = a sin  (2π)/T (t - x T/λ)`
  • `y = a sin  (2π)/λ (vt - x)`
  • `y = a sin ω(t - x/v)`

Given equation is `y(x, t) = 3.0 sin(36t + 0.018x + π/4)`

Option (a): Since there is +ve sign between wr and kx, the wave travels from right to left (the positive direction of x is from left to right). Hence it is correct.

Option (b): Speed of the wave, `v = ω/k = 36^-1/(0.018  cm)` = 2000 cm/s = 20 m/s. Hence it is correct.

Option (c): Frequency of the wave, `v = ω/(2π) = (36  s^-1)/(2π)` = 5.7 Hz. Hence it is correct.

Option (d): Least distance between two successive crests, `λ = (2π)/k = (2π)/(0.018  cm^-1)` = 349 cm. Hence it is wrong.

shaalaa.com
The Speed of a Travelling Wave
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Waves - Exercises [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 15 Waves
Exercises | Q 15.11 | पृष्ठ १०८

संबंधित प्रश्न

A stone dropped from the top of a tower of height 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of sound in air is 340 m s–1? (g= 9.8 m s–2)


A steel rod 100 cm long is clamped at its middle. The fundamental frequency of longitudinal vibrations of the rod is given to be 2.53 kHz. What is the speed of sound in steel?


A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of 10 m s–1, (b) recedes from the platform with a speed of 10 m s–1? (ii) What is the speed of sound in each case? The speed of sound in still air can be taken as 340 m s–1.


Choose the correct option:

Which of the following equations represents a wave travelling along Y-axis? 


A string of length 20 cm and linear mass density 0⋅40 g cm−1 is fixed at both ends and is kept under a tension of 16 N. A wave pulse is produced at t = 0 near an ends as shown in the figure, which travels towards the other end. (a) When will the string have the shape shown in the figure again? (b) Sketch the shape of the string at a time half of that found in part (a).


A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of 160 N m−1 and is stretched by 1⋅0 cm. If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring?


Sound waves of wavelength λ travelling in a medium with a speed of v m/s enter into another medium where its speed is 2v m/s. Wavelength of sound waves in the second medium is ______.


Speed of sound wave in air ______.


Given below are some functions of x and t to represent the displacement of an elastic wave.

  1. y = 5 cos (4x) sin (20t)
  2. y = 4 sin (5x – t/2) + 3 cos (5x – t/2)
  3. y = 10 cos [(252 – 250) πt] cos [(252 + 250)πt]
  4. y = 100 cos (100πt + 0.5x)

State which of these represent

  1. a travelling wave along –x direction
  2. a stationary wave
  3. beats
  4. a travelling wave along +x direction.

Given reasons for your answers.


A wave of frequency υ = 1000 Hz, propagates at a velocity v = 700 m/sec along x-axis. Phase difference at a given point x during a time interval M = 0.5 × 10-3 sec is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×