Advertisements
Advertisements
प्रश्न
A trust has 25 members. How many ways 3 officers can be selected?
उत्तर
Number of members in the trust = 25
The number of ways of selecting 3 officers from 25 members is
= 25C3
= `(25!)/(3! xx (25 - 3)!)`
= `(25!)/(3! xx 22!)`
= `(25 xx 24 xx 23 xx 22!)/(3! xx 22!)`
= `(25 xx 24 xx 23)/(3 xx 2 xx 1)`
= 25 × 4 × 23
= 2300
APPEARS IN
संबंधित प्रश्न
If nPr = 1680 and nCr = 70, find n and r.
Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?
There are 18 guests at a dinner party. They have to sit 9 guests on either side of a long table, three particular persons decide to sit on one side and two others on the other side. In how many ways can the guests to be seated?
In how many ways can a cricket team of 11 players be chosen out of a batch of 15 players?
- There is no restriction on the selection.
- A particular player is always chosen.
- A particular player is never chosen.
How many code symbols can be formed using 5 out of 6 letters A, B, C, D, E, F so that the letters
- cannot be repeated
- can be repeated
- cannot be repeated but must begin with E
- cannot be repeated but end with CAB.
From 20 raffle tickets in a hat, four tickets are to be selected in order. The holder of the first ticket wins a car, the second a motor cycle, the third a bicycle and the fourth a skateboard. In how many different ways can these prizes be awarded?
The number of 3 letter words that can be formed from the letters of the word ‘NUMBER’ when the repetition is allowed are:
If nPr = 720 and nCr = 120, find n, r
Prove that `""^(2"n")"C"_"n" = (2^"n" xx 1 xx 3 xx ... (2"n" - 1))/("n"!)`
Find the total number of subsets of a set with
[Hint: nC0 + nC1 + nC2 + ... + nCn = 2n] 4 elements
Find the total number of subsets of a set with
[Hint: nC0 + nC1 + nC2 + ... + nCn = 2n] n elements
How many different selections of 5 books can be made from 12 different books if, Two particular books are always selected?
How many different selections of 5 books can be made from 12 different books if, Two particular books are never selected?
There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees a particular teacher is included?
A committee of 7 peoples has to be formed from 8 men and 4 women. In how many ways can this be done when the committee consists of at least 3 women?
A polygon has 90 diagonals. Find the number of its sides?
Choose the correct alternative:
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines
Choose the correct alternative:
In a plane there are 10 points are there out of which 4 points are collinear, then the number of triangles formed is