Advertisements
Advertisements
प्रश्न
Abscissa of all the points on the x-axis is ______.
विकल्प
0
1
2
any number
उत्तर
Abscissa of all the points on the x-axis is any number.
Explanation:
Point on x-axis has ordinate as 0 and abscissa can be any number.
APPEARS IN
संबंधित प्रश्न
Prove that the points (−2, 5), (0, 1) and (2, −3) are collinear.
Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by y-axis. Also, find the coordinates of the point of division in each case.
Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.
The area of the triangle formed by the points P (0, 1), Q (0, 5) and R (3, 4) is
If the point \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points A (2, 5) and B( x, y ) in the ratio 3 : 4 , find the value of x2 + y2 .
If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]
If \[D\left( - \frac{1}{5}, \frac{5}{2} \right), E(7, 3) \text{ and } F\left( \frac{7}{2}, \frac{7}{2} \right)\] are the mid-points of sides of \[∆ ABC\] , find the area of \[∆ ABC\] .
The ratio in which the line segment joining P (x1, y1) and Q (x2, y2) is divided by x-axis is
The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is
In which ratio the y-axis divides the line segment joining the points (5, – 6) and (–1, – 4)?