Advertisements
Advertisements
प्रश्न
An alpha particle is accelerated through a potential difference of 100 V. Calculate:
- The speed acquired by the alpha particle, and
- The de-Broglie wavelength is associated with it.
(Take mass of alpha particle = 6.4 × 10−27 kg)
उत्तर
(i) `1/2 "mv"^2` = qV
or, `1/2"mv"^2` = 2e × 100
or, mv2 = 400 eV
or, v = `sqrt((400 "eV")/"m")`
or, v = `sqrt((400 xx 1.6 xx 10^-19)/(6.4 xx 10^-27))`
∴ v = 105 m/s
(ii) de-Broglie wavelength = λ = `"h"/sqrt(2"mqV")`
or, λ = `(6.6 xx 10^-34)/(sqrt(2 xx 6.4 xx 10^-27 xx 2 xx 1.6 xx 10^-19 xx 100))`
∴ λ = 1.03 × 10−12 m
APPEARS IN
संबंधित प्रश्न
What is the
(a) momentum,
(b) speed, and
(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.
What is the de Broglie wavelength of a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s?
Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.
Crystal diffraction experiments can be performed using X-rays, or electrons accelerated through appropriate voltage. Which probe has greater energy? (For quantitative comparison, take the wavelength of the probe equal to 1 Å, which is of the order of inter-atomic spacing in the lattice) (me = 9.11 × 10−31 kg).
Obtain the de Broglie wavelength associated with thermal neutrons at room temperature (27°C). Hence explain why a fast neutron beam needs to be thermalised with the environment before it can be used for neutron diffraction experiments.
The de-Broglie wavelength associated with a material particle when it is accelerated through a potential difference of 150 volt is 1 Å. What will be the de-broglie wavelength associated with the same particle when it is accelerated through a potential difference of 4500 V?
A particle is dropped from a height H. The de Broglie wavelength of the particle as a function of height is proportional to ______.
The ratio of wavelengths of proton and deuteron accelerated by potential Vp and Vd is 1 : `sqrt2`. Then, the ratio of Vp to Vd will be ______.
How will the de-Broglie wavelength associated with an electron be affected when the velocity of the electron decreases? Justify your answer.
E, c and `v` represent the energy, velocity and frequency of a photon. Which of the following represents its wavelength?