Advertisements
Advertisements
प्रश्न
What is the
(a) momentum,
(b) speed, and
(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.
उत्तर
Kinetic energy of the electron, Ek = 120 eV
Planck’s constant, h = 6.6 × 10−34 Js
Mass of an electron, m = 9.1 × 10−31 kg
Charge on an electron, e = 1.6 × 10−19 C
(a) For the electron, we can write the relation for kinetic energy as:
`"E"_"k" = 1/2"mv"^2`
Where,
v = Speed of the electron
∴ `"v"^2 = sqrt((2"eE"_"k")/"m")`
= `sqrt((2 xx 1.6 xx 10^(-19) xx 120)/(9.1 xx 10^(-31)))`
= `sqrt(42.198 xx 10^12)`
= 6.496 × 106 m/s
Momentum of the electron, p = mv
= 9.1 × 10−31 × 6.496 × 106
= 5.91 × 10−24 kg m s−1
Therefore, the momentum of the electron is 5.91 × 10−24 kg m s−1.
(b) Speed of the electron, v = 6.496 × 106 m/s
(c) De Broglie wavelength of an electron having a momentum p, is given as:
`lambda = "h"/"p"`
= `(6.6 xx 10^(-34))/(5.91 xx 10^(-24))`
= 1.116 × 10−10 m
= 0.112 nm
Therefore, the de Broglie wavelength of the electron is 0.112 nm.
APPEARS IN
संबंधित प्रश्न
Describe the construction of photoelectric cell.
A proton and an α-particle have the same de-Broglie wavelength Determine the ratio of their speeds.
Calculate the momentum of the electrons accelerated through a potential difference of 56 V.
An electron and a photon each have a wavelength of 1.00 nm. Find
(a) their momenta,
(b) the energy of the photon, and
(c) the kinetic energy of electron.
Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).
A electron of mass me revolves around a nucleus of charge +Ze. Show that it behaves like a tiny magnetic dipole. Hence prove that the magnetic moment associated wit it is expressed as `vecμ =−e/(2 m_e)vecL `, where `vec L` is the orbital angular momentum of the electron. Give the significance of negative sign.
State any one phenomenon in which moving particles exhibit wave nature.
The wavelength λ of a photon and the de-Broglie wavelength of an electron have the same value. Show that energy of a photon in (2λmc/h) times the kinetic energy of electron; where m, c and h have their usual meaning.
Show with the help of a labelled graph how their wavelength (λ) varies with their linear momentum (p).
The wavelength of the matter wave is dependent on ______.
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______.
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______
An electron is moving with an initial velocity `v = v_0hati` and is in a magnetic field `B = B_0hatj`. Then it’s de Broglie wavelength ______.
An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.
A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?
Assuming an electron is confined to a 1 nm wide region, find the uncertainty in momentum using Heisenberg Uncertainty principle (∆x∆p ≃ h). You can assume the uncertainty in position ∆x as 1 nm. Assuming p ≃ ∆p, find the energy of the electron in electron volts.
Two particles move at a right angle to each other. Their de-Broglie wavelengths are λ1 and λ2 respectively. The particles suffer a perfectly inelastic collision. The de-Broglie wavelength λ, of the final particle, is given by ______.
A particle of mass 4M at rest disintegrates into two particles of mass M and 3M respectively having non zero velocities. The ratio of de-Broglie wavelength of particle of mass M to that of mass 3M will be:
In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV. The minimum wavelength of photons emitted by mercury atoms is close to ______.