Advertisements
Advertisements
प्रश्न
A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?
उत्तर
In this problem since both proton and α-particle are accelerated through the same potential difference,
We know that, `λ = h/sqrt(2mqv)`
∴ `λ oo 1/sqrt(mq)`
`λ_p/λ_α = sqrt(m_αq_α)/(m_pq_P) = sqrt(4m_p xx 2e)/sqrt(m_p xx e) = sqrt(8)`
∴ `λ_p = sqrt(8)λ_α`
i.e., wavelength of proton is `sqrt(8)` times wavelength of α-particle.
Important point: De-Broglie wavelength associated with the charged particles: The energy of a charged particle accelerated through potential difference V is `E = 1/2 mv^2 = qV`
Hence de-Broglie wavelength `λ = h/p = h/sqrt(2mE) = h/sqrt(2mqV)`
`λ_("Electron") = 12.27/sqrt(V) Å, λ_("Proton") = 0.286/sqrt(V) Å`
`λ_("Deutron") = 0.202/sqrt(V) Å, λ_(a"-particle") = 0.101/sqrt(V) Å`
APPEARS IN
संबंधित प्रश्न
Calculate the momentum of the electrons accelerated through a potential difference of 56 V.
What is the de Broglie wavelength of a dust particle of mass 1.0 × 10−9 kg drifting with a speed of 2.2 m/s?
What is the de Broglie wavelength of a nitrogen molecule in air at 300 K? Assume that the molecule is moving with the root-mean square speed of molecules at this temperature. (Atomic mass of nitrogen = 14.0076 u)
A electron of mass me revolves around a nucleus of charge +Ze. Show that it behaves like a tiny magnetic dipole. Hence prove that the magnetic moment associated wit it is expressed as `vecμ =−e/(2 m_e)vecL `, where `vec L` is the orbital angular momentum of the electron. Give the significance of negative sign.
70 cal of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from 30°C to 35°C. The amount of heat required to raise the temperature of the gas through the same range at constant volume will be (assume R = 2 cal/mol-K).
Which one of the following deflect in electric field
An alpha particle is accelerated through a potential difference of 100 V. Calculate:
- The speed acquired by the alpha particle, and
- The de-Broglie wavelength is associated with it.
(Take mass of alpha particle = 6.4 × 10−27 kg)
An electron is accelerated from rest through a potential difference of 100 V. Find:
- the wavelength associated with
- the momentum and
- the velocity required by the electron.
For which of the following particles will it be most difficult to experimentally verify the de-Broglie relationship?
Which of the following graphs correctly represents the variation of a particle momentum with its associated de-Broglie wavelength?