मराठी

A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other? - Physics

Advertisements
Advertisements

प्रश्न

A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?

टीपा लिहा

उत्तर

In this problem since both proton and α-particle are accelerated through the same potential difference,

We know that, `λ = h/sqrt(2mqv)`

∴ `λ  oo 1/sqrt(mq)`

`λ_p/λ_α = sqrt(m_αq_α)/(m_pq_P) = sqrt(4m_p xx 2e)/sqrt(m_p xx e) = sqrt(8)`

∴ `λ_p = sqrt(8)λ_α`

i.e., wavelength of proton is `sqrt(8)` times wavelength of α-particle.

Important point: De-Broglie wavelength associated with the charged particles: The energy of a charged particle accelerated through potential difference V is `E = 1/2 mv^2 = qV`

Hence de-Broglie  wavelength `λ = h/p = h/sqrt(2mE) = h/sqrt(2mqV)`

`λ_("Electron") = 12.27/sqrt(V) Å, λ_("Proton") = 0.286/sqrt(V) Å`

`λ_("Deutron") = 0.202/sqrt(V) Å, λ_(a"-particle") = 0.101/sqrt(V) Å`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Dual Nature Of Radiation And Matter - Exercises [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
पाठ 11 Dual Nature Of Radiation And Matter
Exercises | Q 11.14 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Describe the construction of photoelectric cell.


What is the de Broglie wavelength of a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s?


What is the de Broglie wavelength of a nitrogen molecule in air at 300 K? Assume that the molecule is moving with the root-mean square speed of molecules at this temperature. (Atomic mass of nitrogen = 14.0076 u)


Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)


The wavelength λ of a photon and the de-Broglie wavelength of an electron have the same value. Show that energy of a photon in (2λmc/h) times the kinetic energy of electron; where m, c and h have their usual meaning.


The wavelength of the matter wave is dependent on ______.


An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______.


A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?

  1. The particle could be moving in a circular orbit with origin as centre.
  2. The particle could be moving in an elliptic orbit with origin as its focus.
  3. When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
  4. When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.

Assuming an electron is confined to a 1 nm wide region, find the uncertainty in momentum using Heisenberg Uncertainty principle (∆x∆p ≃ h). You can assume the uncertainty in position ∆x as 1 nm. Assuming p ≃ ∆p, find the energy of the electron in electron volts.


A particle A with a mass m A is moving with a velocity v and hits a particle B (mass mB) at rest (one dimensional motion). Find the change in the de Broglie wavelength of the particle A. Treat the collision as elastic.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×