मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Describe the Construction of Photoelectric Cell. - Physics

Advertisements
Advertisements

प्रश्न

Describe the construction of photoelectric cell.

थोडक्यात उत्तर

उत्तर १

A photoelectric cell is device which converts light energy into electrical energy. It works on the principle of photoelectric effect.

Construction : A photoelectric cell consist a small evacuated bulb. A thin layer of an alkali metal is deposited on inner surface of the bulb. The bulb is made of quartz, if cell is used with ultraviolet light. If the cell is to be used with visible light only. the bulb is made of ordinary glass. A small portion of the surface of bulb is left uncoated and serves as a window for incoming light. The coated surface of the bulb acts as cathode. The anode is in shape of sphere.

shaalaa.com

उत्तर २

Construction —

  1. Photocell consists of evacuated glass tube containing two electrodes emitter (K) and collector (A).
  2. The emitter is shaped in the form of a semi hollow cylinder. It is always kept at a negative potential.
  3. The collector is in the form of a matal rod and fixed at the axis of the semi-cylinderical emitter. The collector is always kept as a positive potential.
  4. The glass tube is fitted on non-metallic base and pins are provided at the base for external connection.

Working —

  1. The emitter is connected to negative terminal and collector is connected to positive terminal of a battery.
  2. A radiation of frequency more than threshold frequency of material of emitter is made incident on the emitter. Photo-emissions take place. The photoelectrons are attracted towards the collector which is positive w.r.t the emitter. Thus, current flows in the circuit.
  3. If the intensity of incident radiation is increased, the photoelectric current increases.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Calculate the momentum of the electrons accelerated through a potential difference of 56 V.


What is the

(a) momentum,

(b) speed, and

(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.


What is the de Broglie wavelength of a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s?


An electron and a photon each have a wavelength of 1.00 nm. Find

(a) their momenta,

(b) the energy of the photon, and

(c) the kinetic energy of electron.


Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.


Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).


Compute the typical de Broglie wavelength of an electron in a metal at 27°C and compare it with the mean separation between two electrons in a metal which is given to be about 2 × 10−10 m.


The energy and momentum of an electron are related to the frequency and wavelength of the associated matter wave by the relations:

E = hv, p = `"h"/lambda`

But while the value of λ is physically significant, the value of v (and therefore, the value of the phase speed vλ) has no physical significance. Why?


The wavelength λ of a photon and the de-Broglie wavelength of an electron have the same value. Show that energy of a photon in (2λmc/h) times the kinetic energy of electron; where m, c and h have their usual meaning.


When a light wave travels from air to glass


What are matter waves?


 Show with the help of a labelled graph how their wavelength (λ) varies with their linear momentum (p).


Sodium and copper have work function 2.3 eV and 4.5 eV respectively. Then, the ratio of the wavelengths is nearest to ______.


70 cal of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from 30°C to 35°C. The amount of heat required to raise the temperature of the gas through the same range at constant volume will be (assume R = 2 cal/mol-K).


Which one of the following deflect in electric field


An electron is moving with an initial velocity `v = v_0hati` and is in a magnetic field `B = B_0hatj`. Then it’s de Broglie wavelength ______.


An electron (mass m) with an initial velocity `v = v_0hati` is in an electric field `E = E_0hatj`. If λ0 = h/mv0, it’s de Broglie wavelength at time t is given by ______.


A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?

  1. The particle could be moving in a circular orbit with origin as centre.
  2. The particle could be moving in an elliptic orbit with origin as its focus.
  3. When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
  4. When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.

Two particles A and B of de Broglie wavelengths λ1 and λ2 combine to form a particle C. The process conserves momentum. Find the de Broglie wavelength of the particle C. (The motion is one dimensional).


A particle A with a mass m A is moving with a velocity v and hits a particle B (mass mB) at rest (one dimensional motion). Find the change in the de Broglie wavelength of the particle A. Treat the collision as elastic.


An electron is accelerated from rest through a potential difference of 100 V. Find:

  1. the wavelength associated with
  2. the momentum and
  3. the velocity required by the electron.

Given below are two statements:

Statement - I: Two photons having equal linear momenta have equal wavelengths.

Statement - II: If the wavelength of photon is decreased, then the momentum and energy of a photon will also decrease.

In the light of the above statements, choose the correct answer from the options given below.


The equation λ = `1.227/"x"` nm can be used to find the de Brogli wavelength of an electron. In this equation x stands for:

Where,

m = mass of electron

P = momentum of electron

K = Kinetic energy of electron

V = Accelerating potential in volts for electron


A particle of mass 4M at rest disintegrates into two particles of mass M and 3M respectively having non zero velocities. The ratio of de-Broglie wavelength of particle of mass M to that of mass 3M will be:


For which of the following particles will it be most difficult to experimentally verify the de-Broglie relationship?


How will the de-Broglie wavelength associated with an electron be affected when the accelerating potential is increased? Justify your answer.


E, c and `v` represent the energy, velocity and frequency of a photon. Which of the following represents its wavelength?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×