English

Describe the Construction of Photoelectric Cell. - Physics

Advertisements
Advertisements

Question

Describe the construction of photoelectric cell.

Answer in Brief

Solution 1

A photoelectric cell is device which converts light energy into electrical energy. It works on the principle of photoelectric effect.

Construction : A photoelectric cell consist a small evacuated bulb. A thin layer of an alkali metal is deposited on inner surface of the bulb. The bulb is made of quartz, if cell is used with ultraviolet light. If the cell is to be used with visible light only. the bulb is made of ordinary glass. A small portion of the surface of bulb is left uncoated and serves as a window for incoming light. The coated surface of the bulb acts as cathode. The anode is in shape of sphere.

shaalaa.com

Solution 2

Construction —

  1. Photocell consists of evacuated glass tube containing two electrodes emitter (K) and collector (A).
  2. The emitter is shaped in the form of a semi hollow cylinder. It is always kept at a negative potential.
  3. The collector is in the form of a matal rod and fixed at the axis of the semi-cylinderical emitter. The collector is always kept as a positive potential.
  4. The glass tube is fitted on non-metallic base and pins are provided at the base for external connection.

Working —

  1. The emitter is connected to negative terminal and collector is connected to positive terminal of a battery.
  2. A radiation of frequency more than threshold frequency of material of emitter is made incident on the emitter. Photo-emissions take place. The photoelectrons are attracted towards the collector which is positive w.r.t the emitter. Thus, current flows in the circuit.
  3. If the intensity of incident radiation is increased, the photoelectric current increases.
shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Calculate the momentum of the electrons accelerated through a potential difference of 56 V.


What is the

(a) momentum,

(b) speed, and

(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.


The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which

(a) an electron, and

(b) a neutron, would have the same de Broglie wavelength.


What is the de Broglie wavelength of a dust particle of mass 1.0 × 10−9 kg drifting with a speed of 2.2 m/s?


Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.


Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).


Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)


Find the typical de Broglie wavelength associated with a He atom in helium gas at room temperature (27°C) and 1 atm pressure, and compare it with the mean separation between two atoms under these conditions.


The energy and momentum of an electron are related to the frequency and wavelength of the associated matter wave by the relations:

E = hv, p = `"h"/lambda`

But while the value of λ is physically significant, the value of v (and therefore, the value of the phase speed vλ) has no physical significance. Why?


State any one phenomenon in which moving particles exhibit wave nature.


A proton and α-particle are accelerated through the same potential difference. The ratio of the de-Broglie wavelength λp to that λα is _______.


The de-Broglie wavelength associated with a material particle when it is accelerated through a potential difference of 150 volt is 1 Å. What will be the de-broglie wavelength associated with the same particle when it is accelerated through a potential difference of 4500 V?


An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______.


An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______


An electron is moving with an initial velocity `v = v_0hati` and is in a magnetic field `B = B_0hatj`. Then it’s de Broglie wavelength ______.


An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.


An electron (mass m) with an initial velocity `v = v_0hati` is in an electric field `E = E_0hatj`. If λ0 = h/mv0, it’s de Broglie wavelength at time t is given by ______.


The de Broglie wavelength of a photon is twice the de Broglie wavelength of an electron. The speed of the electron is `v_e = c/100`. Then ______.

  1. `E_e/E_p = 10^-4`
  2. `E_e/E_p = 10^-2`
  3. `p_e/(m_ec) = 10^-2`
  4. `p_e/(m_ec) = 10^-4`

A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?

  1. The particle could be moving in a circular orbit with origin as centre.
  2. The particle could be moving in an elliptic orbit with origin as its focus.
  3. When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
  4. When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.

An electron is accelerated from rest through a potential difference of 100 V. Find:

  1. the wavelength associated with
  2. the momentum and
  3. the velocity required by the electron.

The De-Broglie wavelength of electron in the third Bohr orbit of hydrogen is ______ × 10-11 m (given radius of first Bohr orbit is 5.3 × 10-11 m):


The ratio of wavelengths of proton and deuteron accelerated by potential Vp and Vd is 1 : `sqrt2`. Then, the ratio of Vp to Vd will be ______.


A particle of mass 4M at rest disintegrates into two particles of mass M and 3M respectively having non zero velocities. The ratio of de-Broglie wavelength of particle of mass M to that of mass 3M will be:


How will the de-Broglie wavelength associated with an electron be affected when the velocity of the electron decreases? Justify your answer.


Matter waves are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×