Advertisements
Advertisements
Question
Matter waves are ______.
Options
waves associated with moving particles.
waves associated with stationary particles.
waves associated with any charged particles.
waves associated with electrons only.
Solution
Matter waves are waves associated with moving particles.
Explanation:
Matter waves are associated with moving protons, electrons, neutrons and atoms.
APPEARS IN
RELATED QUESTIONS
Calculate the de Broglie wavelength of the electrons accelerated through a potential difference of 56 V.
The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which
(a) an electron, and
(b) a neutron, would have the same de Broglie wavelength.
What is the de Broglie wavelength of a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s?
When a light wave travels from air to glass
What are matter waves?
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______
A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?
Assuming an electron is confined to a 1 nm wide region, find the uncertainty in momentum using Heisenberg Uncertainty principle (∆x∆p ≃ h). You can assume the uncertainty in position ∆x as 1 nm. Assuming p ≃ ∆p, find the energy of the electron in electron volts.
Two particles move at a right angle to each other. Their de-Broglie wavelengths are λ1 and λ2 respectively. The particles suffer a perfectly inelastic collision. The de-Broglie wavelength λ, of the final particle, is given by ______.
How will the de-Broglie wavelength associated with an electron be affected when the accelerating potential is increased? Justify your answer.