Advertisements
Advertisements
प्रश्न
Matter waves are ______.
विकल्प
waves associated with moving particles.
waves associated with stationary particles.
waves associated with any charged particles.
waves associated with electrons only.
उत्तर
Matter waves are waves associated with moving particles.
Explanation:
Matter waves are associated with moving protons, electrons, neutrons and atoms.
APPEARS IN
संबंधित प्रश्न
Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.
Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).
Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)
Compute the typical de Broglie wavelength of an electron in a metal at 27°C and compare it with the mean separation between two electrons in a metal which is given to be about 2 × 10−10 m.
Describe briefly how the Davisson-Germer experiment demonstrated the wave nature of electrons.
The de-Broglie wavelength associated with a material particle when it is accelerated through a potential difference of 150 volt is 1 Å. What will be the de-broglie wavelength associated with the same particle when it is accelerated through a potential difference of 4500 V?
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______
A proton, a neutron, an electron and an α-particle have same energy. Then their de Broglie wavelengths compare as ______.
An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.
E, c and `v` represent the energy, velocity and frequency of a photon. Which of the following represents its wavelength?