Advertisements
Advertisements
प्रश्न
Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).
उत्तर
The momentum of a photon having energy (hv) is given as:
`"p" = "hv"/"c" = "h"/lambda`
`lambda = "h"/"p"` ................(i)
Where,
λ = Wavelength of the electromagnetic radiation
c = Speed of light
h = Planck’s constant
De Broglie wavelength of the photon is given as:
`lambda = "h"/("mv")`
But p = mv
∴ `lambda = "h"/"p"` ....................(ii)
Where,
m = Mass of the photon
v = Velocity of the photon
Hence, it can be inferred from equations (i) and (ii) that the wavelength of the electromagnetic radiation is equal to the de Broglie wavelength of the photon.
APPEARS IN
संबंधित प्रश्न
A proton and an α-particle have the same de-Broglie wavelength Determine the ratio of their speeds.
What is the de Broglie wavelength of a ball of mass 0.060 kg moving at a speed of 1.0 m/s?
For what kinetic energy of a neutron will the associated de Broglie wavelength be 1.40 × 10−10 m?
Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.
Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)
Obtain the de Broglie wavelength associated with thermal neutrons at room temperature (27°C). Hence explain why a fast neutron beam needs to be thermalised with the environment before it can be used for neutron diffraction experiments.
The energy and momentum of an electron are related to the frequency and wavelength of the associated matter wave by the relations:
E = hv, p = `"h"/lambda`
But while the value of λ is physically significant, the value of v (and therefore, the value of the phase speed vλ) has no physical significance. Why?
The wavelength of the matter wave is dependent on ______.
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______.
A particle is dropped from a height H. The de Broglie wavelength of the particle as a function of height is proportional to ______.
An electron (mass m) with an initial velocity `v = v_0hati` is in an electric field `E = E_0hatj`. If λ0 = h/mv0, it’s de Broglie wavelength at time t is given by ______.
Relativistic corrections become necessary when the expression for the kinetic energy `1/2 mv^2`, becomes comparable with mc2, where m is the mass of the particle. At what de Broglie wavelength will relativistic corrections become important for an electron?
- λ = 10 nm
- λ = 10–1 nm
- λ = 10–4 nm
- λ = 10–6 nm
Two particles A and B of de Broglie wavelengths λ1 and λ2 combine to form a particle C. The process conserves momentum. Find the de Broglie wavelength of the particle C. (The motion is one dimensional).
An alpha particle is accelerated through a potential difference of 100 V. Calculate:
- The speed acquired by the alpha particle, and
- The de-Broglie wavelength is associated with it.
(Take mass of alpha particle = 6.4 × 10−27 kg)
An electron is accelerated from rest through a potential difference of 100 V. Find:
- the wavelength associated with
- the momentum and
- the velocity required by the electron.
Two particles move at a right angle to each other. Their de-Broglie wavelengths are λ1 and λ2 respectively. The particles suffer a perfectly inelastic collision. The de-Broglie wavelength λ, of the final particle, is given by ______.