Advertisements
Advertisements
Question
When a light wave travels from air to glass
Options
its wavelength decreases.
its wavelength increases.
there is no change in wavelength.
its frequency decreases.
Solution
When a light wave travels from air to glass its wavelength decreases.
[∵ λ ∝ v ( Frequency is constant)]
APPEARS IN
RELATED QUESTIONS
70 cal of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from 30°C to 35°C. The amount of heat required to raise the temperature of the gas through the same range at constant volume will be (assume R = 2 cal/mol-K).
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______.
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______
An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.
An electron (mass m) with an initial velocity `v = v_0hati` is in an electric field `E = E_0hatj`. If λ0 = h/mv0, it’s de Broglie wavelength at time t is given by ______.
The de Broglie wavelength of a photon is twice the de Broglie wavelength of an electron. The speed of the electron is `v_e = c/100`. Then ______.
- `E_e/E_p = 10^-4`
- `E_e/E_p = 10^-2`
- `p_e/(m_ec) = 10^-2`
- `p_e/(m_ec) = 10^-4`
A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?
- The particle could be moving in a circular orbit with origin as centre.
- The particle could be moving in an elliptic orbit with origin as its focus.
- When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
- When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.
Assuming an electron is confined to a 1 nm wide region, find the uncertainty in momentum using Heisenberg Uncertainty principle (∆x∆p ≃ h). You can assume the uncertainty in position ∆x as 1 nm. Assuming p ≃ ∆p, find the energy of the electron in electron volts.
Two particles A and B of de Broglie wavelengths λ1 and λ2 combine to form a particle C. The process conserves momentum. Find the de Broglie wavelength of the particle C. (The motion is one dimensional).
Two particles move at a right angle to each other. Their de-Broglie wavelengths are λ1 and λ2 respectively. The particles suffer a perfectly inelastic collision. The de-Broglie wavelength λ, of the final particle, is given by ______.