English
Karnataka Board PUCPUC Science 2nd PUC Class 12

What is the de Broglie wavelength of a dust particle of mass 1.0 × 10−9 kg drifting with a speed of 2.2 m/s? - Physics

Advertisements
Advertisements

Question

What is the de Broglie wavelength of a dust particle of mass 1.0 × 10−9 kg drifting with a speed of 2.2 m/s?

Numerical

Solution

Mass of the dust particle, m = 1 × 10−9 kg

Speed of the dust particle, v = 2.2 m/s

Planck’s constant, h = 6.6 × 10−34 Js

De Broglie wavelength of the dust particle is given by the relation:

`lambda = "h"/"mv"`

= `(6.6 xx 10^-34)/(1 xx 10^(-9) xx 2.2)`

= 3.0 × 10−25 m

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Dual Nature of Radiation and Matter - Exercise [Page 408]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 11 Dual Nature of Radiation and Matter
Exercise | Q 11.15 (c) | Page 408
NCERT Physics [English] Class 12
Chapter 11 Dual Nature of Radiation and Matter
Exercise | Q 15.3 | Page 408

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

A proton and an α-particle have the same de-Broglie wavelength Determine the ratio of  their speeds.


For what kinetic energy of a neutron will the associated de Broglie wavelength be 1.40 × 10−10 m?


Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.


Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).


Crystal diffraction experiments can be performed using X-rays, or electrons accelerated through appropriate voltage. Which probe has greater energy? (For quantitative comparison, take the wavelength of the probe equal to 1 Å, which is of the order of inter-atomic spacing in the lattice) (me = 9.11 × 10−31 kg).


Compute the typical de Broglie wavelength of an electron in a metal at 27°C and compare it with the mean separation between two electrons in a metal which is given to be about 2 × 10−10 m.


The wavelength λ of a photon and the de-Broglie wavelength of an electron have the same value. Show that energy of a photon in (2λmc/h) times the kinetic energy of electron; where m, c and h have their usual meaning.


Sodium and copper have work function 2.3 eV and 4.5 eV respectively. Then, the ratio of the wavelengths is nearest to ______.


Which one of the following deflect in electric field


An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______


An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.


Relativistic corrections become necessary when the expression for the kinetic energy `1/2 mv^2`, becomes comparable with mc2, where m is the mass of the particle. At what de Broglie wavelength will relativistic corrections become important for an electron?

  1. λ = 10 nm
  2. λ = 10–1 nm
  3. λ = 10–4 nm
  4. λ = 10–6 nm

The de Broglie wavelength of a photon is twice the de Broglie wavelength of an electron. The speed of the electron is `v_e = c/100`. Then ______.

  1. `E_e/E_p = 10^-4`
  2. `E_e/E_p = 10^-2`
  3. `p_e/(m_ec) = 10^-2`
  4. `p_e/(m_ec) = 10^-4`

A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?

  1. The particle could be moving in a circular orbit with origin as centre.
  2. The particle could be moving in an elliptic orbit with origin as its focus.
  3. When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
  4. When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.

A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?


Assuming an electron is confined to a 1 nm wide region, find the uncertainty in momentum using Heisenberg Uncertainty principle (∆x∆p ≃ h). You can assume the uncertainty in position ∆x as 1 nm. Assuming p ≃ ∆p, find the energy of the electron in electron volts.


The De-Broglie wavelength of electron in the third Bohr orbit of hydrogen is ______ × 10-11 m (given radius of first Bohr orbit is 5.3 × 10-11 m):


The equation λ = `1.227/"x"` nm can be used to find the de Brogli wavelength of an electron. In this equation x stands for:

Where,

m = mass of electron

P = momentum of electron

K = Kinetic energy of electron

V = Accelerating potential in volts for electron


Matter waves are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×