मराठी

E, c and v represent the energy, velocity and frequency of a photon. Which of the following represents its wavelength? - Physics

Advertisements
Advertisements

प्रश्न

E, c and `v` represent the energy, velocity and frequency of a photon. Which of the following represents its wavelength?

पर्याय

  • `(hν)/c^2`

  • `(hc)/E`

  • `(hν)/c`

MCQ

उत्तर

`bb((hc)/E)`

Explanation:

The energy of photon E = hν = `(hc)/lambda`

`therefore lambda = (hc)/E`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Describe the construction of photoelectric cell.


Calculate the momentum of the electrons accelerated through a potential difference of 56 V.


What is the de Broglie wavelength of a ball of mass 0.060 kg moving at a speed of 1.0 m/s?


What is the de Broglie wavelength of a nitrogen molecule in air at 300 K? Assume that the molecule is moving with the root-mean square speed of molecules at this temperature. (Atomic mass of nitrogen = 14.0076 u)


An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______.


Two particles A1 sand A2 of masses m1, m2 (m1 > m2) have the same de Broglie wavelength. Then ______.

  1. their momenta are the same.
  2. their energies are the same.
  3. energy of A1 is less than the energy of A2.
  4. energy of A1 is more than the energy of A2.

Assuming an electron is confined to a 1 nm wide region, find the uncertainty in momentum using Heisenberg Uncertainty principle (∆x∆p ≃ h). You can assume the uncertainty in position ∆x as 1 nm. Assuming p ≃ ∆p, find the energy of the electron in electron volts.


In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV. The minimum wavelength of photons emitted by mercury atoms is close to ______.


Which of the following graphs correctly represents the variation of a particle momentum with its associated de-Broglie wavelength?


How will the de-Broglie wavelength associated with an electron be affected when the velocity of the electron decreases? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×