मराठी

How will the de-Broglie wavelength associated with an electron be affected when the velocity of the electron decreases? Justify your answer. - Physics

Advertisements
Advertisements

प्रश्न

How will the de-Broglie wavelength associated with an electron be affected when the velocity of the electron decreases? Justify your answer.

टीपा लिहा

उत्तर

According to the de-Broglie wavelength formula, the wavelength is inversely proportional to electron momentum. The product of mass and velocity is momentum. As a result, as the electron's velocity declines, so does its momentum. As a result, the de-Broglie wavelength of the electron will grow.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

What is the de Broglie wavelength of a ball of mass 0.060 kg moving at a speed of 1.0 m/s?


Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).


Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)


The energy and momentum of an electron are related to the frequency and wavelength of the associated matter wave by the relations:

E = hv, p = `"h"/lambda`

But while the value of λ is physically significant, the value of v (and therefore, the value of the phase speed vλ) has no physical significance. Why?


What are matter waves?


Which one of the following deflect in electric field


A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?

  1. The particle could be moving in a circular orbit with origin as centre.
  2. The particle could be moving in an elliptic orbit with origin as its focus.
  3. When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
  4. When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.

The equation λ = `1.227/"x"` nm can be used to find the de Brogli wavelength of an electron. In this equation x stands for:

Where,

m = mass of electron

P = momentum of electron

K = Kinetic energy of electron

V = Accelerating potential in volts for electron


In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV. The minimum wavelength of photons emitted by mercury atoms is close to ______.


How will the de-Broglie wavelength associated with an electron be affected when the accelerating potential is increased? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×