मराठी

How would the stopping potential for a given photosensitive surface change if the frequency of the incident radiation were increased? Justify your answer. - Physics

Advertisements
Advertisements

प्रश्न

How would the stopping potential for a given photosensitive surface change if the frequency of the incident radiation were increased? Justify your answer.

टीपा लिहा

उत्तर

The stopping potential for a certain photosensitive surface increases as the frequency of the incident radiation increases. This is because the stopping potential is directly proportional to the frequency of the incident radiation, according to the photoelectric effect equation: Kmax = hf - Φ, where h is Planck's constant, f is the frequency of incident radiation and the metal's work function. Kmax is the photoelectron's maximal kinetic energy. As a result, as the frequency of the input radiation increases, so does the stopping potential required to stop the photoelectrons, while the kinetic energy of the photoelectrons emitted decreases.

shaalaa.com
Experimental Study of Photoelectric Effect
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्‍न

(a) Estimate the speed with which electrons emitted from a heated emitter of an evacuated tube impinge on the collector maintained at a potential difference of 500 V with respect to the emitter. Ignore the small initial speeds of the electrons. The specific charge of the electron, i.e., its e/m is given to be 1.76 × 1011 C kg−1.

(b) Use the same formula you employ in (a) to obtain electron speed for an collector potential of 10 MV. Do you see what is wrong? In what way is the formula to be modified?


It is found that photosynthesis starts in certain plants when exposed to sunlight, but it does not start if the plants are exposed only to infrared light. Explain.


Light of wavelength λ falls on a metal with work-function hc/λ0. Photoelectric effect will take place only if


A photon of energy hv is absorbed by a free electron of a metal with work-function hv − φ.


An atom absorbs a photon of wavelength 500 nm and emits another photon of wavelength 700 nm. Find the net energy absorbed by the atom in the process.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Calculate the number of photons emitted per second by a 10 W sodium vapour lamp. Assume that 60% of the consumed energy is converted into light. Wavelength of sodium light = 590 nm

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


When the sun is directly overhead, the surface of the earth receives 1.4 × 103 W m−2 of sunlight. Assume that the light is monochromatic with average wavelength 500 nm and that no light is absorbed in between the sun and the earth's surface. The distance between the sun and the earth is 1.5 × 1011 m. (a) Calculate the number of photons falling per second on each square metre of earth's surface directly below the sun. (b) How many photons are there in each cubic metre near the earth's surface at any instant? (c) How many photons does the sun emit per second?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a light wave is given by  `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.


Define the term: stopping potential in the photoelectric effect.


The figure shows a plot of stopping potential (V0) versus `1/lambda`, where λ is the wavelength of the radiation causing photoelectric emission from a surface. The slope of the line is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×