Advertisements
Advertisements
प्रश्न
The energy and momentum of an electron are related to the frequency and wavelength of the associated matter wave by the relations:
E = hv, p = `"h"/lambda`
But while the value of λ is physically significant, the value of v (and therefore, the value of the phase speed vλ) has no physical significance. Why?
उत्तर
The absolute value of the energy of a particle is arbitrary within the additive constant. Hence, wavelength (λ) is significant, but the frequency (v) associated with an electron has no direct physical significance.
Therefore, the product νλ(phase speed)has no physical significance.
Group speed is given as:
`"v"_"G" = ("dv")/("dk")`
= `"dv"/("d"(1/lambda)) = "dE"/"dp" = ("d"("p"^2/2"m"))/"dp" = "p"/"m"`
This quantity has a physical meaning.
APPEARS IN
संबंधित प्रश्न
Describe the construction of photoelectric cell.
A proton and an α-particle have the same de-Broglie wavelength Determine the ratio of their speeds.
Calculate the de Broglie wavelength of the electrons accelerated through a potential difference of 56 V.
The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which
(a) an electron, and
(b) a neutron, would have the same de Broglie wavelength.
What is the de Broglie wavelength of a dust particle of mass 1.0 × 10−9 kg drifting with a speed of 2.2 m/s?
An electron and a photon each have a wavelength of 1.00 nm. Find
(a) their momenta,
(b) the energy of the photon, and
(c) the kinetic energy of electron.
Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).
A electron of mass me revolves around a nucleus of charge +Ze. Show that it behaves like a tiny magnetic dipole. Hence prove that the magnetic moment associated wit it is expressed as `vecμ =−e/(2 m_e)vecL `, where `vec L` is the orbital angular momentum of the electron. Give the significance of negative sign.
Show with the help of a labelled graph how their wavelength (λ) varies with their linear momentum (p).
70 cal of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from 30°C to 35°C. The amount of heat required to raise the temperature of the gas through the same range at constant volume will be (assume R = 2 cal/mol-K).
Which one of the following deflect in electric field
The wavelength of the matter wave is dependent on ______.
A proton and α-particle are accelerated through the same potential difference. The ratio of the de-Broglie wavelength λp to that λα is _______.
The de-Broglie wavelength associated with a material particle when it is accelerated through a potential difference of 150 volt is 1 Å. What will be the de-broglie wavelength associated with the same particle when it is accelerated through a potential difference of 4500 V?
An electromagnetic wave of wavelength ‘λ’ is incident on a photosensitive surface of negligible work function. If ‘m’ mass is of photoelectron emitted from the surface has de-Broglie wavelength λd, then ______
A proton, a neutron, an electron and an α-particle have same energy. Then their de Broglie wavelengths compare as ______.
An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.
A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?
How will the de-Broglie wavelength associated with an electron be affected when the accelerating potential is increased? Justify your answer.