हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

What is the De Broglie Wavelength Of A Bullet of Mass 0.040 Kg Travelling at the Speed of 1.0 Km/S - Physics

Advertisements
Advertisements

प्रश्न

What is the de Broglie wavelength of a bullet of mass 0.040 kg travelling at the speed of 1.0 km/s?

संख्यात्मक

उत्तर

Mass of the bullet, m = 0.040 kg

Speed of the bullet, v = 1.0 km/s = 1000 m/s

Planck’s constant, h = 6.6 × 10−34 Js

De Broglie wavelength of the bullet is given by the relation:

`lambda = "h"/"mv"`

= `(6.6 xx 10^(-34))/(0.040 xx 1000)`

= 1.65 × 10−35 m

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Dual Nature of Radiation and Matter - Exercise [पृष्ठ ४०८]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 11 Dual Nature of Radiation and Matter
Exercise | Q 11.15 (a) | पृष्ठ ४०८
एनसीईआरटी Physics [English] Class 12
अध्याय 11 Dual Nature of Radiation and Matter
Exercise | Q 15.1 | पृष्ठ ४०८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Describe the construction of photoelectric cell.


What is the

(a) momentum,

(b) speed, and

(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.


The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which

(a) an electron, and

(b) a neutron, would have the same de Broglie wavelength.


Find the de Broglie wavelength of a neutron, in thermal equilibrium with matter, having an average kinetic energy of `(3/2)` kT at 300 K.


Show that the wavelength of electromagnetic radiation is equal to the de Broglie wavelength of its quantum (photon).


Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)


Compute the typical de Broglie wavelength of an electron in a metal at 27°C and compare it with the mean separation between two electrons in a metal which is given to be about 2 × 10−10 m.


A electron of mass me revolves around a nucleus of charge +Ze. Show that it behaves like a tiny magnetic dipole. Hence prove that the magnetic moment associated wit it is expressed as `vecμ =−e/(2 m_e)vecL `, where `vec L` is the orbital angular momentum of the electron. Give the significance of negative sign.


Describe briefly how the Davisson-Germer experiment demonstrated the wave nature of electrons.


 Show with the help of a labelled graph how their wavelength (λ) varies with their linear momentum (p).


An electron is moving with an initial velocity `v = v_0hati` and is in a magnetic field `B = B_0hatj`. Then it’s de Broglie wavelength ______.


An electron (mass m) with an initial velocity `v = v_0hati (v_0 > 0)` is in an electric field `E = - E_0hati `(E0 = constant > 0). It’s de Broglie wavelength at time t is given by ______.


Relativistic corrections become necessary when the expression for the kinetic energy `1/2 mv^2`, becomes comparable with mc2, where m is the mass of the particle. At what de Broglie wavelength will relativistic corrections become important for an electron?

  1. λ = 10 nm
  2. λ = 10–1 nm
  3. λ = 10–4 nm
  4. λ = 10–6 nm

The de Broglie wavelength of a photon is twice the de Broglie wavelength of an electron. The speed of the electron is `v_e = c/100`. Then ______.

  1. `E_e/E_p = 10^-4`
  2. `E_e/E_p = 10^-2`
  3. `p_e/(m_ec) = 10^-2`
  4. `p_e/(m_ec) = 10^-4`

A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ1, λ2 with λ1 > λ2. Which of the following statement are true?

  1. The particle could be moving in a circular orbit with origin as centre.
  2. The particle could be moving in an elliptic orbit with origin as its focus.
  3. When the de Broglie wavelength is λ1, the particle is nearer the origin than when its value is λ2.
  4. When the de Broglie wavelength is λ2, the particle is nearer the origin than when its value is λ1.

A proton and an α-particle are accelerated, using the same potential difference. How are the de-Broglie wavelengths λp and λa related to each other?


An electron is accelerated from rest through a potential difference of 100 V. Find:

  1. the wavelength associated with
  2. the momentum and
  3. the velocity required by the electron.

A particle of mass 4M at rest disintegrates into two particles of mass M and 3M respectively having non zero velocities. The ratio of de-Broglie wavelength of particle of mass M to that of mass 3M will be:


For which of the following particles will it be most difficult to experimentally verify the de-Broglie relationship?


How will the de-Broglie wavelength associated with an electron be affected when the velocity of the electron decreases? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×