Advertisements
Advertisements
प्रश्न
An amount of ₹ 5,000/- is to be deposited in three different bonds bearing 6%, 7% and 8% per year respectively. Total annual income is ₹ 358/-. If the income from the first two investments is ₹ 70/- more than the income from the third, then find the amount of investment in each bond by the rank method
उत्तर
Let the three different bonds be x, y, and z
x + y + z = 5000 ........(1)
`x(6/00) + y(7/00) + z(8/100)` = 358
`(6x)/100 + (7y)/100 + (8z)/100` = 358
6x + 7y + 8x = 35800 .........(2)
`x(6/100) + y(7/100) = z(8/100) + 70`
`(6x)/100 + (7y)/100 = (8z)/100 + 70`
6x + 7y = 8z + 7000
6x + 7y – 8z = 7000 ........(3)
The matrix equation corresponding to the given system is
`[(1, 1, 1),(6, 7, 8),(6, 7, -8)] [(x),(y),(z)] = [(5000),(35800),(7000)]`
A X = B
Augmented Matrix [A, B] |
Elementary Transformation |
`[(1, 1, 1, 5000),(6, 7, 8, 358000),(6, 7, -8, 7000)]` | |
`∼[(1, 1, 1, 5000),(6, 7, 8, 35800),(0, 0, -16, -28800)]` | `{:"R"_3 -> "R"_3 - "R"_2:}` |
`∼[(1, 1, 1, 5000),(0, 1, 2, 5800),(0, 0, -16, -28800)]` | `{:"R"_2 -> "R"_2 - 6"R"_1:}` |
p(A) = 3; P(A,B) = 3 |
∴ The given system is equivalent to the matrix equation
`[(1, 1, 1),(0, 1, 2),(0, 0, -16)][(x),(y),(z)] = [(5000),(5800),(-28800)]`
x + y + z = 5000 ........(1)
y + 2z = 5800 .........(2)
– 16z = – 28800 .........(3)
Equation (3) ⇒ z = `(-28800)/(-16)`
∴ z = 1800
Equation (2) ⇒ y + 2(1800) = 5800
y + 3600 = 5800
y = 5800 – 3600
∴ y = 2200
Equation (1) ⇒ x + 2200 + 1800 = 5000
x + 4000 = 5000
x = 5000 – 4000
∴ x = 1000
The amount of investment in each bond is ₹ 1000, ₹ 2200 and ₹ 1800.
APPEARS IN
संबंधित प्रश्न
Find the rank of the following matrices
`((1, -1),(3, -6))`
Find the rank of the following matrices
`((1, 2, -1, 3),(2, 4, 1, -2),(3, 6, 3, -7))`
Show that the following system of equations have unique solutions: x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6 by rank method
Choose the correct alternative:
A = (1, 2, 3), then the rank of AAT is
Choose the correct alternative:
If p(A) = p(A, B)= the number of unknowns, then the system is
Choose the correct alternative:
For the system of equations x + 2y + 3z = 1, 2x + y + 3z = 3, 5x + 5y + 9z = 4
Choose the correct alternative:
If |A| ≠ 0, then A is
Choose the correct alternative:
Rank of a null matrix is
Find the rank of the matrix
A = `((4, 5, 2, 2),(3, 2, 1, 6),(4, 4, 8, 0))`
Let S be the set of all λ ∈ R for which the system of linear equations
2x – y + 2z = 2
x – 2y + λz = –4
x + λy + z = 4
has no solution. Then the set S ______.