Advertisements
Advertisements
Question
An amount of ₹ 5,000/- is to be deposited in three different bonds bearing 6%, 7% and 8% per year respectively. Total annual income is ₹ 358/-. If the income from the first two investments is ₹ 70/- more than the income from the third, then find the amount of investment in each bond by the rank method
Solution
Let the three different bonds be x, y, and z
x + y + z = 5000 ........(1)
`x(6/00) + y(7/00) + z(8/100)` = 358
`(6x)/100 + (7y)/100 + (8z)/100` = 358
6x + 7y + 8x = 35800 .........(2)
`x(6/100) + y(7/100) = z(8/100) + 70`
`(6x)/100 + (7y)/100 = (8z)/100 + 70`
6x + 7y = 8z + 7000
6x + 7y – 8z = 7000 ........(3)
The matrix equation corresponding to the given system is
`[(1, 1, 1),(6, 7, 8),(6, 7, -8)] [(x),(y),(z)] = [(5000),(35800),(7000)]`
A X = B
Augmented Matrix [A, B] |
Elementary Transformation |
`[(1, 1, 1, 5000),(6, 7, 8, 358000),(6, 7, -8, 7000)]` | |
`∼[(1, 1, 1, 5000),(6, 7, 8, 35800),(0, 0, -16, -28800)]` | `{:"R"_3 -> "R"_3 - "R"_2:}` |
`∼[(1, 1, 1, 5000),(0, 1, 2, 5800),(0, 0, -16, -28800)]` | `{:"R"_2 -> "R"_2 - 6"R"_1:}` |
p(A) = 3; P(A,B) = 3 |
∴ The given system is equivalent to the matrix equation
`[(1, 1, 1),(0, 1, 2),(0, 0, -16)][(x),(y),(z)] = [(5000),(5800),(-28800)]`
x + y + z = 5000 ........(1)
y + 2z = 5800 .........(2)
– 16z = – 28800 .........(3)
Equation (3) ⇒ z = `(-28800)/(-16)`
∴ z = 1800
Equation (2) ⇒ y + 2(1800) = 5800
y + 3600 = 5800
y = 5800 – 3600
∴ y = 2200
Equation (1) ⇒ x + 2200 + 1800 = 5000
x + 4000 = 5000
x = 5000 – 4000
∴ x = 1000
The amount of investment in each bond is ₹ 1000, ₹ 2200 and ₹ 1800.
APPEARS IN
RELATED QUESTIONS
Find the rank of the following matrices
`((1, -2, 3, 4),(-2, 4, -1, -3),(-1, 2, 7, 6))`
If A = `((1, 1, -1),(2, -3, 4),(3, -2, 3))` and B = `((1, -2, 3),(-2, 4, -6),(5, 1, -1))`, then find the rank of AB and the rank of BA.
Show that the following system of equations have unique solutions: x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6 by rank method
Choose the correct alternative:
If p(A) = r then which of the following is correct?
Choose the correct alternative:
If A = `((1),(2),(3))` then the rank of AAT is
Choose the correct alternative:
If the number of variables in a non-homogeneous system AX = B is n, then the system possesses a unique solution only when
Choose the correct alternative:
If `|"A"_("n" xx "n")|` = 3 and |adj A| = 243 then the value n is
Choose the correct alternative:
Rank of a null matrix is
Examine the consistency of the system of equations:
x + y + z = 7, x + 2y + 3z = 18, y + 2z = 6
Find k if the equations 2x + 3y – z = 5, 3x – y + 4z = 2, x + 7y – 6z = k are consistent