Advertisements
Advertisements
प्रश्न
Find the rank of the matrix
A = `((4, 5, 2, 2),(3, 2, 1, 6),(4, 4, 8, 0))`
उत्तर
A = `[(4, 5, 2, 2),(3, 2, 1, 6),(4, 4, 8, 0)]`
The order of A is 3 × 4
∴ p(A) < 3
Let us transform the matrix A to an echelon form
Martix | Elementary Transformation |
A = `[(4, 5, 2, 2),(3, 2, 1, 6),(4, 4, 8, 0)]` | |
`∼ [(3, 2, 1, 6),(4, 5, 2, 2),(4, 4, 8, 0)]` | `{:"R"_1 ↔ "R"_2:}` |
`∼ [(3, 2, 1, 6),(4, 5, 2, 2),(0, -1, 6, -2)]` | `{:"R"_3 ↔ "R"_2:}` |
`∼ [(3, 2, 1, 6),(1, 3, 1, -4),(0, -1, 6, -2)]` | `{:"R"_2 -> "R"_2 - "R"_1:}` |
`∼ [(1, 3, 1, -4),(3, 2, 1, 6),(0, -1, 6, -2)]` | `{:"R"_1 ↔ "R"_2:}` |
`∼ [(1, 3, 1, -4),(0, -7, -2, 18),(0, -1, 6, -2)]` | `{:"R"_2 -> "R"_3 - 3"R"_1:}` |
`∼ [(1, 3, 1, -4),(0, -1, 6, -2),(0, -7, -2, 18)]` | `{:"R"_2 ↔ "R"_3:}` |
`∼ [(1, 3, 1, -4),(0, -1, 6, -2),(0, 0, -44, 32)]` | `{:"R"_3 -> "R"_3 - 3"R"_1:}` |
The last equivalent matrix is in the echelon form.
Number of non-zero rows = 3
∴ p(A) = 3
APPEARS IN
संबंधित प्रश्न
Find the rank of the following matrices
`((3, 1, -5, -1),(1, -2, 1, -5),(1, 5, -7, 2))`
Solve the following system of equations by rank method
x + y + z = 9, 2x + 5y + 7z = 52, 2x – y – z = 0
For what values of the parameter λ, will the following equations fail to have unique solution: 3x – y + λz = 1, 2x + y + z = 2, x + 2y – λz = – 1
Choose the correct alternative:
A = (1, 2, 3), then the rank of AAT is
Choose the correct alternative:
The rank of the matrix `((1, 1, 1),(1, 2, 3),(1, 4, 9))` is
Choose the correct alternative:
If A = `((1),(2),(3))` then the rank of AAT is
Choose the correct alternative:
If the rank of the matrix `[(lambda, -1, 0),(0, lambda, -1),(-1, 0, lambda)]` is 2, then λ is
Choose the correct alternative:
The rank of the diagonal matrix `[(1, , , , ,),(, 2, , , ,),(, , -3, , ,),(, , , 0, ,),(, , , , 0,),(, , , , ,0)]`
Choose the correct alternative:
Which of the following is not an elementary transformation?
Choose the correct alternative:
For the system of equations x + 2y + 3z = 1, 2x + y + 3z = 3, 5x + 5y + 9z = 4