Advertisements
Advertisements
प्रश्न
An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and the radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately
उत्तर
Radius of the inside shell = 5 mm
Radius of the outside shell = 5.3 mm
Volume V = `4/3 pi"r"^3`
dV = `4/3` π3r2dr
= 4 π 5 × 5 × 0.3
= 100π × 0.3
= 30π
Approximate volume of the shell = 30 mm3
APPEARS IN
संबंधित प्रश्न
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
Find a linear approximation for the following functions at the indicated points.
h(x) = `x/(x + 1), x_0` = 1
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Percentage error
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the volume
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find df for f(x) = x2 + 3x and evaluate it for x = 2 and dx = 0.1
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x2 + 2x + 3, x = – 0.5, Δx = dx = 0.1
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. Approximately how much did the tree diameter grow?
The trunk of a tree has a diameter of 30 cm. During the following year, the circumference grew 6 cm. What is the percentage increase in the area of the cross-section of the tree?
In a newly developed city, it is estimated that the voting population (in thousands) will increase according to V(t) = 30 + 12t2 – t3, 0 ≤ t ≤ 8 where t is the time in years. Find the approximate change in voters for the time change from 4 to `4 1/6` years
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
Choose the correct alternative:
If u(x, y) = `"e"^(x^2 + y^2)`, then `(delu)/(delx)` is equal to
Choose the correct alternative:
If f(x) = `x/(x + 1)`, then its differential is given by