Advertisements
Advertisements
प्रश्न
An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears not later than the k th roll of the die?
उत्तर
Number of sample space = 6
In this case, 2 appears not later than kth roll of the die
Then it is possible that 2 comes in first throw i.e. 1 outcome.
If 2 does not appear in first throw
Then outcomes will be 5 and 2 outcomes in second throw i.e. 1 outcome.
∴ Possible outcome = 5 × 1 = 5
Similarly, if 2 does not appear in second throw and appears in third throw
∴ Possible outcome = 5 × 5 × 1
Now we have the series:
= `1 + 5 + 5 xx 5 + 5 xx 5 xx 5 + ... + 5^(k - 1)`
= `1 + 5 + 5^2 + 5^3 + ... + 5^(k - 1)`
= `(.*(r^k - 1))/(r - 1)`
= `(5^k - 1)/(5 - 1)`
= `(5^k - 1)/4`
Hence, the required answer = `(5^k - 1)/4`.
APPEARS IN
संबंधित प्रश्न
A die is thrown. Describe the following events:
- A: a number less than 7
- B: a number greater than 7
- C: a multiple of 3
- D: a number less than 4
- E: an even number greater than 4
- F: a number not less than 3
Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F', F'
In a single throw of a die describe the event:
B = Getting a number greater than 7
In a single throw of a die describe the event:
D = Getting a number less than 4
In a single throw of a die describe the event:
E = Getting an even number greater than 4
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
\[P (\bar{ A } \cap \bar{ B } )\]
A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (B ∩ \[\bar{ A } \] )
If three dice are throw simultaneously, then the probability of getting a score of 5 is
An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or complex
A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?
One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is choosen at random. Next a ball is randomly chosen from the urn. Then a second ball is choosen at random from the same urn without replacing the first ball. What is the probability that two balls of opposite colour are choosen?
A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.
A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)
Determine the probability p, for the following events.
At least one head appears in two tosses of a fair coin.
Determine the probability p, for the following events.
A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well-shuffled ordinary deck of 52 cards.
Determine the probability p, for the following events.
The sum of 6 appears in a single toss of a pair of fair dice.
The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then `P(barA) + P(barB)` is ______.
If M and N are any two events, the probability that at least one of them occurs is ______.
Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.
If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.