हिंदी

In a Single Throw of a Die Describe the Event:(Iv) D = Getting a Number Less than 4 - Mathematics

Advertisements
Advertisements

प्रश्न

In a single throw of a die describe the event:

D = Getting a number less than 4

उत्तर

When a dice is thrown, the sample space is given by = {1, 2, 3, 4, 5, 6}.
Accordingly, we have:

D = {1, 2, 3}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.2 | Q 4.4 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In a single throw of a die describe the event:

A = Getting a number less than 7


In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

 C = Getting a multiple of 3


In a single throw of a die describe the event:

E = Getting an even number greater than 4


In a single throw of a die describe the event:

F = Getting a number not less than 3.
Also, find A ∪ BA ∩ BB ∩ CE ∩ FD ∩ F and \[ \bar { F } \] . 

 


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find

\[P (\bar{ A } \cap \bar{ B } )\]


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find  
P (A ∩  \[\bar{ B } \] )


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find

P (B ∩ \[\bar{ A } \] )


A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then


Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?


An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?


An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears not later than the k th roll of the die?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. Write the sample space showing all possible outcomes


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)


Determine the probability p, for the following events. 
A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well-shuffled ordinary deck of 52 cards.


Determine the probability p, for the following events. 
The sum of 6 appears in a single toss of a pair of fair dice.


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.


The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then `P(barA) + P(barB)` is ______.


If M and N are any two events, the probability that at least one of them occurs is ______. 


The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4


If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.


Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.


If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×