English

In a Single Throw of a Die Describe the Event:(Iv) D = Getting a Number Less than 4 - Mathematics

Advertisements
Advertisements

Question

In a single throw of a die describe the event:

D = Getting a number less than 4

Solution

When a dice is thrown, the sample space is given by = {1, 2, 3, 4, 5, 6}.
Accordingly, we have:

D = {1, 2, 3}

shaalaa.com
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.2 | Q 4.4 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Three coins are tossed once. Let A denote the event "three heads show", B denote the event "two heads and one tail show". C denote the event "three tails show" and D denote the event "a head shows on the first coin". Which events are

  1. mutually exclusive?
  2. simple?
  3. compound?

Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

Describe the events

  1. A' 
  2. not B
  3. A or B
  4. A and B
  5. A but not C
  6. B or C
  7. B and C
  8. A ∩ B' ∩ C'

In a single throw of a die describe the event:

A = Getting a number less than 7


In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

 C = Getting a multiple of 3


In a single throw of a die describe the event:

E = Getting an even number greater than 4


In a single throw of a die describe the event:

F = Getting a number not less than 3.
Also, find A ∪ BA ∩ BB ∩ CE ∩ FD ∩ F and \[ \bar { F } \] . 

 


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find

\[P (\bar{ A } \cap \bar{ B } )\]


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find  
P (A ∩  \[\bar{ B } \] )


A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?


Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?


If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?


An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple 


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by adding the probabilities of the elementary outcomes.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate `P(barB)` from P (B), also calculate `P(barB)` directly from the elementary outcomes of `barB`


Determine the probability p, for the following events. 
At least one head appears in two tosses of a fair coin.


Determine the probability p, for the following events. 
The sum of 6 appears in a single toss of a pair of fair dice.


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.


If M and N are any two events, the probability that at least one of them occurs is ______. 


If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.


Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×