English

Determine the probability p, for the following events. The sum of 6 appears in a single toss of a pair of fair dice. - Mathematics

Advertisements
Advertisements

Question

Determine the probability p, for the following events. 
The sum of 6 appears in a single toss of a pair of fair dice.

Sum

Solution

When a pair of dice is rolled

Then total number of sample space = 36 out of which (1, 5), (5, 1), (2, 4), (4, 2) and (3, 3) are the favourable events

∴ Required probability = `5/36`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 299]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 17.(d) | Page 299

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A die is thrown. Describe the following events:

  1. A: a number less than 7
  2. B: a number greater than 7
  3. C: a multiple of 3
  4. D: a number less than 4
  5. E: an even number greater than 4
  6. F: a number not less than 3

Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F', F'


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

Describe the events

  1. A' 
  2. not B
  3. A or B
  4. A and B
  5. A but not C
  6. B or C
  7. B and C
  8. A ∩ B' ∩ C'

In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

 C = Getting a multiple of 3


In a single throw of a die describe the event:

D = Getting a number less than 4


In a single throw of a die describe the event:

E = Getting an even number greater than 4


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find

P (B ∩ \[\bar{ A } \] )


A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?


If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple


A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate P(A), P(B), and P(A ∩ B)


Determine the probability p, for the following events. 
A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well-shuffled ordinary deck of 52 cards.


The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then `P(barA) + P(barB)` is ______.


The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4


If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.


Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.


If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×