English

A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are - Mathematics

Advertisements
Advertisements

Question

A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple

Sum

Solution

Let E1, E2, E3, E4 and E5 be the events that the surgeries are rated as very complex, complex, routine, simple and very simple respectively.

∴ P(E1) = 0.15

P(E2) = 0.20

P(E3) = 0.31

P(E4) = 0.26

And P(E5) = 0.08

P(routine or simple) = P(E3 ∪ E4)

= P(E3) + P(E4)

= 0.31 + 0.26

= 0.57

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 297]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 8.(d) | Page 297

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

Describe the events

  1. A' 
  2. not B
  3. A or B
  4. A and B
  5. A but not C
  6. B or C
  7. B and C
  8. A ∩ B' ∩ C'

In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

D = Getting a number less than 4


In a single throw of a die describe the event:

E = Getting an even number greater than 4


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).


A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then


Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex 


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. Write the sample space showing all possible outcomes


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is choosen at random. Next a ball is randomly chosen from the urn. Then a second ball is choosen at random from the same urn without replacing the first ball. What is the probability that two balls of opposite colour are choosen?


A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by adding the probabilities of the elementary outcomes.


Determine the probability p, for the following events.
An odd number appears in a single toss of a fair die.


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.


The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then `P(barA) + P(barB)` is ______.


If M and N are any two events, the probability that at least one of them occurs is ______. 


If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.


Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×