English

Determine the probability p, for the following events. A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well shuffled ordinary deck of 52 cards. - Mathematics

Advertisements
Advertisements

Question

Determine the probability p, for the following events. 
A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well-shuffled ordinary deck of 52 cards.

Sum

Solution

Favourable events are 4 kings + 2 of hearts + 3 of spades = 4 + 1 + 1 = 6

= `6/52`

= `3/26`

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise [Page 299]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 16 Probability
Exercise | Q 17.(c) | Page 299

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A die is thrown. Describe the following events:

  1. A: a number less than 7
  2. B: a number greater than 7
  3. C: a multiple of 3
  4. D: a number less than 4
  5. E: an even number greater than 4
  6. F: a number not less than 3

Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F', F'


In a single throw of a die describe the event:

A = Getting a number less than 7


In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

E = Getting an even number greater than 4


In a single throw of a die describe the event:

F = Getting a number not less than 3.
Also, find A ∪ BA ∩ BB ∩ CE ∩ FD ∩ F and \[ \bar { F } \] . 

 


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).


A natural number is chosen at random from amongst first 500. What is the probability that the number so chosen is divisible by 3 or 5?


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?


Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24, respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes and/or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty breaks as well as badly worn tires?


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or simple


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. Write the sample space showing all possible outcomes


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is choosen at random. Next a ball is randomly chosen from the urn. Then a second ball is choosen at random from the same urn without replacing the first ball. What is the probability that two balls of opposite colour are choosen?


A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by adding the probabilities of the elementary outcomes.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate `P(barB)` from P (B), also calculate `P(barB)` directly from the elementary outcomes of `barB`


The probability of intersection of two events A and B is always less than or equal to those favourable to the event A.


The probability of an occurrence of event A is 0.7 and that of the occurrence of event B is 0.3 and the probability of occurrence of both is 0.4


If e1, e2, e3, e4 are the four elementary outcomes in a sample space and P(e1) = 0.1, P(e2) = 0.5, P(e3) = 0.1, then the probability of e4 is ______.


Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}, then `barE` is ______.


If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2 and P(A ∩ B) = 0.1, then the value of `P(A ∩ barB)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×