हिंदी

One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is perfor - Mathematics

Advertisements
Advertisements

प्रश्न

One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. What is the probability that two black balls are chosen?

योग

उत्तर

Given that one of the two urns is choosen

Then a ball is randomly choosen from the urn

Then a second ball is choosen at random from the same urn without replacing the first ball

If two black balls are choosen

Then the favourable events are B1B2, B2B1

i.e. 2

∴ Required probability = `2/12 = 1/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Probability - Exercise [पृष्ठ २९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 16 Probability
Exercise | Q 12.(b) | पृष्ठ २९८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

Describe the events

  1. A' 
  2. not B
  3. A or B
  4. A and B
  5. A but not C
  6. B or C
  7. B and C
  8. A ∩ B' ∩ C'

In a single throw of a die describe the event:

A = Getting a number less than 7


In a single throw of a die describe the event:

B = Getting a number greater than 7


In a single throw of a die describe the event:

D = Getting a number less than 4


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find
P (A ∪ B).


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find

\[P (\bar{ A } \cap \bar{ B } )\]


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find  
P (A ∩  \[\bar{ B } \] )


A and B are two events such that P (A) = 0.54, P (B) = 0.69 and P (A ∩ B) = 0.35. Find

P (B ∩ \[\bar{ A } \] )


A dice is thrown twice. What is the probability that at least one of the two throws come up with the number 3?


If three dice are throw simultaneously, then the probability of getting a score of 5 is


If a person visits his dentist, suppose the probability that he will have his teeth cleaned is 0.48, the probability that he will have a cavity filled is 0.25, the probability that he will have a tooth extracted is 0.20, the probability that he will have a teeth cleaned and a cavity filled is 0.09, the probability that he will have his teeth cleaned and a tooth extracted is 0.12, the probability that he will have a cavity filled and a tooth extracted is 0.07, and the probability that he will have his teeth cleaned, a cavity filled, and a tooth extracted is 0.03. What is the probability that a person visiting his dentist will have atleast one of these things done to him?


An experiment consists of rolling a die until a 2 appears. How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated complex or very complex 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated neither very complex nor very simple 


A team of medical students doing their internship have to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple or very simple are respectively, 0.15, 0.20, 0.31, 0.26, .08. Find the probabilities that a particular surgery will be rated routine or complex


One urn contains two black balls (labelled B1 and B2) and one white ball. A second urn contains one black ball and two white balls (labelled W1 and W2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball. Write the sample space showing all possible outcomes


A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Using the addition law of probability, calculate P(A ∪ B)


A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are 
P(e1) = P(e2) = 0.08, P(e3) = P(e4) = P(e5) = 0.1
P(e6) = P(e7) = 0.2, P(e8) = P(e9) = 0.07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
Calculate `P(barB)` from P (B), also calculate `P(barB)` directly from the elementary outcomes of `barB`


Determine the probability p, for the following events.
An odd number appears in a single toss of a fair die.


Determine the probability p, for the following events. 
At least one head appears in two tosses of a fair coin.


If P(A ∪ B) = P(A ∩ B) for any two events A and B, then ______.


The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then `P(barA) + P(barB)` is ______.


If M and N are any two events, the probability that at least one of them occurs is ______. 


The probability of intersection of two events A and B is always less than or equal to those favourable to the event A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×