हिंदी

An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible: P(A) = 9120, P(B) = 45120, P(C) = 27120 - Mathematics

Advertisements
Advertisements

प्रश्न

An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:

P(A) = `9/120`, P(B) = `45/120`, P(C) = `27/120`, P(D) = `46/120`

योग

उत्तर

P(S) = P(A ∪ B ∪ C ∪ D)

= `9/120 + 45/120 + 27/120 + 46/120`

= `127/120 ≠ 1`

This violates the condition that P(S) = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Probability - Solved Examples [पृष्ठ २९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 16 Probability
Solved Examples | Q 5.(b) | पृष्ठ २९१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Three coins are tossed. Describe two events which are mutually exclusive.


Three coins are tossed. Describe two events which are mutually exclusive but not exhaustive.


Three coins are tossed. Describe three events which are mutually exclusive but not exhaustive.


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5.

State true or false: (give reason for your answer).

A and B are mutually exclusive


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer).

A = B'


Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice ≤ 5

State true or false: (give reason for your answer)

A' , B' ,C are mutually exclusive and exhaustive.


Events E and F are such that P(not E or not F) = 0.25, State whether E and F are mutually exclusive.


Three coins are tossed. Describe.  two events A and B which are mutually exclusive.


Three coins are tossed. Describe. three events AB and C which are mutually exclusive and exhaustive.


Three coins are tossed. Describe. two events A and B which are not mutually exclusive.


Three coins are tossed. Describe.

(iv) two events A and B which are mutually exclusive but not exhaustive.

 

If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find

\[P (\bar{ A } \cap \bar{ B} )\]


From a well shuffled deck of 52 cards, 4 cards are drawn at random. What is the probability that all the drawn cards are of the same colour.


A box contains 10 white, 6 red and 10 black balls. A ball is drawn at random from the box. What is the probability that the ball drawn is either white or red?


In a race, the odds in favour of horses ABCD are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.


The probability that a person will travel by plane is 3/5 and that he will travel by trains is 1/4. What is the probability that he (she) will travel by plane or train?


A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?


If \[\frac{(1 - 3p)}{2}, \frac{(1 + 4p)}{3}, \frac{(1 + p)}{6}\] are the probabilities of three mutually exclusive and exhaustive events, then the set of all values of p is

 


If S is the sample space and P(A) = \[\frac{1}{3}\]  P(B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =

 

If A and B are any two events having P(A ∪ B) = `1/2` and P`(barA) = 2/3`, then the probability of `barA ∩ B` is ______.


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B)


If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∩ B′)


If A and B are mutually exclusive events, then ______.


The probability of happening of an event A is 0.5 and that of B is 0.3. If A and B are mutually exclusive events, then the probability of neither A nor B is ______.


Let E1, E2, E3 be three mutually exclusive events such that P(E1) = `(2 + 3p)/6`, P(E2) = `(2 - p)/8` and P(E3) = `(1 - p)/2`. If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×