Advertisements
Advertisements
प्रश्न
A box contains 30 bolts and 40 nuts. Half of the bolts and half of the nuts are rusted. If two items are drawn at random, what is the probability that either both are rusted or both are bolts?
उत्तर
The numbers of bolts and nuts are 30 and 40, respectively.
Then the numbers of rusted bolts and rusted nuts are 15 and 20, respectively.
Total number of items = 30 + 40 = 70
Total number of rusted items = 15 + 20 = 35
Total number of ways of drawing two items = 70C2
Let R and B be the events in which both the items drawn are rusted items and bolts, respectively.
R and B are not mutually exclusive events, because there are 15 rusted bolts.
P(items are both rusted or both bolts) = P (R ∪ B)
= P(R) + P (B) -P (R ∩ B)
=\[\frac{^{35}{}{C}_2}{^{70}{}{C}_2} + \frac{^{30}{}{C}_2}{^{70}{}{C}_2} - \frac{^{15}{}{C}_2}{^{70}{}{C}_2} = \frac{1 \times 2}{70 \times 69}\left( \frac{35 \times 34}{1 \times 2} + \frac{30 \times 29}{1 \times 2} - \frac{15 \times 14}{1 \times 2} \right)\]
\[= \frac{1850}{70 \times 69} = \frac{185}{483}\]
APPEARS IN
संबंधित प्रश्न
A die is rolled. Let E be the event “die shows 4” and F be the event “die shows even number”. Are E and F mutually exclusive?
An experiment involves rolling a pair of dice and recording the numbers that come up. Describe the following events:
A: the sum is greater than 8, B: 2 occurs on either die
C: The sum is at least 7 and a multiple of 3.
Which pairs of these events are mutually exclusive?
Three coins are tossed. Describe three events which are mutually exclusive and exhaustive.
Three coins are tossed. Describe two events which are mutually exclusive but not exhaustive.
Three coins are tossed. Describe three events which are mutually exclusive but not exhaustive.
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A and B are mutually exclusive and exhaustive
Two dice are thrown. The events A, B and C are as follows:
A: getting an even number on the first die.
B: getting an odd number on the first die.
C: getting the sum of the numbers on the dice ≤ 5
State true or false: (give reason for your answer)
A and C are mutually exclusive
Events E and F are such that P(not E or not F) = 0.25, State whether E and F are mutually exclusive.
Three coins are tossed. Describe. two events A and B which are mutually exclusive.
Three coins are tossed. Describe. two events A and B which are not mutually exclusive.
Three coins are tossed. Describe.
(iv) two events A and B which are mutually exclusive but not exhaustive.
A die is thrown twice. Each time the number appearing on it is recorded. Describe the following events:
A = Both numbers are odd.
B = Both numbers are even.
C = sum of the numbers is less than 6
Also, find A ∪ B, A ∩ B, A ∪ C, A ∩ C
Which pairs of events are mutually exclusive?
Two dice are thrown. The events A, B, C, D, E and F are described as:
A = Getting an even number on the first die.
B = Getting an odd number on the first die.
C = Getting at most 5 as sum of the numbers on the two dice.
D = Getting the sum of the numbers on the dice greater than 5 but less than 10.
E = Getting at least 10 as the sum of the numbers on the dice.
F = Getting an odd number on one of the dice.
State true or false:
- A and B are mutually exclusive.
- A and B are mutually exclusive and exhaustive events.
- A and C are mutually exclusive events.
- C and D are mutually exclusive and exhaustive events.
- C, D and E are mutually exclusive and exhaustive events.
- A' and B' are mutually exclusive events.
- A, B, F are mutually exclusive and exhaustive events.
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P (A ∪ B)
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P ( \[\bar{ A} \] ∩ B)
If A and B be mutually exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find
P (A ∩\[\bar{ B } \] ).
Given two mutually exclusive events A and B such that P(A) = 1/2 and P(B) = 1/3, find P(A or B).
From a well shuffled deck of 52 cards, 4 cards are drawn at random. What is the probability that all the drawn cards are of the same colour.
In a race, the odds in favour of horses A, B, C, D are 1 : 3, 1 : 4, 1 : 5 and 1 : 6 respectively. Find probability that one of them wins the race.
The probability that a person will travel by plane is 3/5 and that he will travel by trains is 1/4. What is the probability that he (she) will travel by plane or train?
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(A ∩ \[\bar{ B } \] )
If A and B are mutually exclusive events such that P(A) = 0.35 and P(B) = 0.45, find P(\[\bar{ A } \] ∩ \[\bar{B} \] )
If A, B, C are three mutually exclusive and exhaustive events of an experiment such that 3 P(A) = 2 P(B) = P(C), then P(A) is equal to
An experiment has four possible outcomes A, B, C and D, that are mutually exclusive. Explain why the following assignments of probabilities are not permissible:
P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = – 0.20
If A and B are any two events having P(A ∪ B) = `1/2` and P`(barA) = 2/3`, then the probability of `barA ∩ B` is ______.
If A, B, C are three mutually exclusive and exhaustive events of an experiment such that 3P(A) = 2P(B) = P(C), then P(A) is equal to ______.
A die is loaded in such a way that each odd number is twice as likely to occur as each even number. Find P(G), where G is the event that a number greater than 3 occurs on a single roll of the die.
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A ∪ B)
If A and B are mutually exclusive events, P(A) = 0.35 and P(B) = 0.45, find P(A′ ∩ B′)
One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John.
Determine P(John promoted)
P(Rita promoted)
P(Aslam promoted)
P(Gurpreet promoted)
If A and B are mutually exclusive events, then ______.
Column A | Column B |
(a) If E1 and E2 are the two mutually exclusive events | (i) E1 ∩ E2 = E1 |
(b) If E1 and E2 are the mutually exclusive and exhaustive events | (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1 |
(c) If E1 and E2 have common outcomes, then | (iii) E1 ∩ E2 = Φ, E1 ∪ E2 = S |
(d) If E1 and E2 are two events such that E1 ⊂ E2 | (iv) E1 ∩ E2 = Φ |