हिंदी

Answer the following question: Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12

आकृति
योग

उत्तर

Given, equations of sides of rectangle are x = 8, x = 10, y = 11 and y = 12

From the above diagram,

Vertices of rectangle are A(8, 11), B(10, 11), C(10, 12) and D(8, 12).

Equation of diagonal AC is

y-1112-11=x-810-8

y-111=x-82

∴ 2y – 22 = x – 8

∴ x – 2y + 14 = 0

Equation of diagonal BD is y-1112-11=x-108-10

y-111=x-10-2

∴ –2y + 22 = x – 10

∴ x + 2y = 32

shaalaa.com
Equations of Line in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Miscellaneous Exercise 5 | Q II. (22) | पृष्ठ १२६

संबंधित प्रश्न

Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line having slope 12 and containing the point (3, −2).


Find the equation of the line containing point A(3, 5) and having slope 23.


Find the equation of the line containing point A(4, 3) and having inclination 120°


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


Find the equation of the line having inclination 135° and making X-intercept 7


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the midpoints of sides AB and BC


Find the x and y intercept of the following line:

x3+y2 = 1


Find the x and y intercept of the following line:

3x2+2y3 = 1


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


The lines x+1-10=y+3-1=z-41 and x+10-1=y+1-3=z-14 intersect at the point ______ 


The slope of normal to the curve x = t and y = t-1tat t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The line L given by x5+yb=1 passes through the point (13, 32). The line K is parallel to L and its equation is xc+y3=1. Then, the distance between L and K is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.