हिंदी

Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.

योग

उत्तर

Given, A(2, 1) and B(3, 2)

Equation of the line in two point form is

`(y - y_1)/(y_2 - y_1) = (x - x_1)/(x_2 - x_1)`

∴ The equation of the required line is

`(y - 1)/(2 - 1) = (x - 2)/(3 - 2)`

∴ `(y - 1)/1 = (x - 2)/1`

∴ y – 1 = x – 2

∴ y = x – 1

Comparing this equation with y = mx + c, we get m = 1 and c = – 1

Alternate Method:

Points A(2, 1) and B(3, 2) lie on the line y = mx + c.

∴ They must satisfy the equation.

∴ 2m + c = 1  ...(i)

and 3m + c = 2 ...(ii)

equation (ii) – equation (i) gives

m = 1

Substituting m = 1 in (i), we get

2(1) + c = 1

∴ c = 1 – 2 = – 1

shaalaa.com
Equations of Line in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Exercise 5.3 [पृष्ठ ११४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Exercise 5.3 | Q 6 | पृष्ठ ११४

संबंधित प्रश्न

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)


Find the equation of the line having slope `1/2` and containing the point (3, −2).


Find the equation of the line containing point A(4, 3) and having inclination 120°


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the median AD


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×