हिंदी

Find the x and y intercept of the following line: 2x − 3y + 12 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the x and y intercept of the following line:

2x − 3y + 12 = 0

योग

उत्तर

Given equation of the line is 2x − 3y + 12 = 0

∴ 2x − 3y = − 12

∴ `(2x)/((-12)) - (3y)/((-12))` = 1

∴ `x/(-6) + y/4` = 1

This is of the form `x/"a" + y/"b"` = 1,

where x-intercept = a, y-intercept = b

∴ x-intercept = − 6 and y-intercept = 4

shaalaa.com
Equations of Line in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Exercise 5.3 [पृष्ठ ११४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Exercise 5.3 | Q 9. (c) | पृष्ठ ११४

संबंधित प्रश्न

Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Answer the following question:

Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×