हिंदी

Answer the following question: Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.

योग

उत्तर

Let m be the slope of the other line passing through M(2, 3) and making an angle of 45° with the line whose slope is 2.

∴ tan 45° = `|("m" - 2)/(1 + "m"(2))|`

∴ 1 = `|("m" - 2)/(1 + 2"m")|`

∴ `("m" - 2)/(1 + 2"m")` = ± 1

∴  `("m" - 2)/(1 + 2"m") = 1 or  ("m" - 2)/(1 + 2"m")` = – 1

∴ m – 2 = 1 + 2m or m – 2 = – 1 – 2m

∴ m = – 3 or 3m = 1

∴ m = – 3 or m = `1/3`

When m = – 3, equation of the line is

y – 3 = – 3(x – 2)

∴ y – 3 = – 3x + 6

∴ 3x + y = 9

When m = `1/3`, equation of the line is

y – 3 = `1/3(x - 2)`

∴ 3y – 9 = x – 2

∴ x – 3y + 7 = 0

Hence, equations of required lines are

3x + y = 9 and x – 3y + 7 = 0.

shaalaa.com
Equations of Line in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Miscellaneous Exercise 5 | Q II. (20) | पृष्ठ १२५

संबंधित प्रश्न

Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line containing the origin and having inclination 60°


Find the equation of the line having slope `1/2` and containing the point (3, −2).


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the midpoints of sides AB and BC


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×