Advertisements
Advertisements
प्रश्न
Answer the following question:
Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.
उत्तर
Let m be the slope of the other line passing through M(2, 3) and making an angle of 45° with the line whose slope is 2.
∴ tan 45° = `|("m" - 2)/(1 + "m"(2))|`
∴ 1 = `|("m" - 2)/(1 + 2"m")|`
∴ `("m" - 2)/(1 + 2"m")` = ± 1
∴ `("m" - 2)/(1 + 2"m") = 1 or ("m" - 2)/(1 + 2"m")` = – 1
∴ m – 2 = 1 + 2m or m – 2 = – 1 – 2m
∴ m = – 3 or 3m = 1
∴ m = – 3 or m = `1/3`
When m = – 3, equation of the line is
y – 3 = – 3(x – 2)
∴ y – 3 = – 3x + 6
∴ 3x + y = 9
When m = `1/3`, equation of the line is
y – 3 = `1/3(x - 2)`
∴ 3y – 9 = x – 2
∴ x – 3y + 7 = 0
Hence, equations of required lines are
3x + y = 9 and x – 3y + 7 = 0.
APPEARS IN
संबंधित प्रश्न
Write the equation of the line :
parallel to the X−axis and at a distance of 5 unit form it and above it
Obtain the equation of the line :
parallel to the X−axis and making an intercept of 3 unit on the Y−axis
Obtain the equation of the line containing the point :
A(2, – 3) and parallel to the Y−axis
Find the equation of the line containing the origin and having inclination 60°
Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.
The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.
The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the midpoints of sides AB and BC
Find the x and y intercept of the following line:
`x/3 + y/2` = 1
Find the x and y intercept of the following line:
2x − 3y + 12 = 0
Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.
Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).
Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).
N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.
Select the correct option from the given alternatives:
The equation of the line through (1, 2), which makes equal intercepts on the axes, is
Answer the following question:
Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.
Answer the following question:
Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.
Answer the following question:
Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC
Answer the following question:
Find the Y-intercept of the line whose slope is 4 and which has X intercept 5
Answer the following question:
The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.
Answer the following question:
The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.
Answer the following question:
P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2
Answer the following question:
Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.
If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.
The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______
The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.
The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______
The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______
Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.
Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.
N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.