मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.

बेरीज

उत्तर

Vertices of ΔABC are A(3, 4), B(2, 0) and C(−1, 6).

Equation of the line in two point form is

`(y - y_1)/(y_2 - y_1) = (x - x_1)/(x_2 - x_1)`

∴ The equation of the side BC is

`(y - 0)/(6 - 0) = (x - 2)/(-1 - 2)`

∴ `y/6 = (x - 2)/(-3)`

∴ −3y = 6x − 12

∴ 6x + 3y − 12 = 0    ...(∵ both side divide by 3)

∴ 2x + y − 4 = 0

shaalaa.com
Equations of Line in Different Forms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Straight Line - Exercise 5.3 [पृष्ठ ११४]

APPEARS IN

संबंधित प्रश्‍न

Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


Find the equation of the line containing point A(4, 3) and having inclination 120°


Find the equation of the line having inclination 135° and making X-intercept 7


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×