मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the equation of the line containing the origin and having inclination 60° - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the line containing the origin and having inclination 60°

बेरीज

उत्तर

Given, Inclination of line = θ = 60°

∴ Slope of the line (m) = tan θ = tan 60° = `sqrt(3)`

Equation of the line having slope m and passing through origin (0, 0) is y = mx.

∴ The equation of the required line is y = `sqrt(3)x`

shaalaa.com
Equations of Line in Different Forms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Straight Line - Exercise 5.3 [पृष्ठ ११४]

APPEARS IN

संबंधित प्रश्‍न

Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line having slope `1/2` and containing the point (3, −2).


Find the equation of the line containing point A(4, 3) and having inclination 120°


Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×