Advertisements
Advertisements
प्रश्न
Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)
उत्तर
Let A, B, and C be the midpoints of sides PQ, QR, and PR respectively of ΔPQR.
A is the midpoint of side PQ.
∴ A ≡ `((-1 + 4)/2, (8 - 2)/2) = (3/2, 3)`
Slope of side PQ = `(-2 - 8)/(4 - (-1))`
= `(-10)/5`
= – 2
∴ Slope of perpendicular bisector of PQ is `1/2` and it passes through `(3/2, 3)`.
∴ Equation of the perpendicular bisector of side PQ is
y – 3 = `1/2(x - 3/2)`
∴ y – 3 = `1/2((2x - 3)/2)`
∴ 4(y – 3) = 2x – 3
∴ 4y – 12 = 2x – 3
∴ 2x – 4y + 9 = 0
B is the midpoint of side QR
∴ B ≡ `((4 - 5)/2, (-2 - 3)/2) = ((-1)/2, (-5)/2)`
Slope of side QR = `(-3 - (- 2))/(-5 - 4)`
= `(-1)/(-9)`
= `1/9`
∴ Slope of perpendicular bisector of QR is – 9 and it passes through `(-1/2, -5/2)`.
∴ Equation of the perpendicular bisector of side QR is
`y - (-5/2) = -9[x - (-1/2)]`
∴ `(2y + 5)/2 = -9((2x + 1)/2)`
∴ 2y + 5 = –18x – 9
∴ 18x + 2y + 14 = 0
∴ 9x + y + 7 = 0
C is the midpoint of side PR.
∴ C ≡ `((-1 - 5)/2, (8 - 3)/2) = (-3, 5/2)`
Slope of side PR = `(-3 - 8)/(-5 - (-1)) = (-11)/(-4) = 11/4`
∴ Slope of perpendicular bisector of PR is `-4/11` and it passes through `(-3, 5/2)`.
∴ Equation of the perpendicular bisector of side PR is
`y - 5/2 = -4/11(x + 3)`
∴ `11((2y - 5)/2)` = – 4(x + 3)
∴ 11(2y – 5) = – 8(x + 3)
∴ 22y – 55 = – 8x – 24
∴ 8x + 22y – 31 = 0
APPEARS IN
संबंधित प्रश्न
Write the equation of the line :
parallel to the X−axis and at a distance of 5 unit form it and above it
Obtain the equation of the line :
parallel to the Y−axis and making an intercept of 4 unit on the X−axis
Find the equation of the line passing through the points A(2, 0), and B(3, 4)
Find the equation of the line having slope `1/2` and containing the point (3, −2).
The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.
Find the x and y intercept of the following line:
`x/3 + y/2` = 1
Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.
Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.
Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).
Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).
Answer the following question:
Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.
Answer the following question:
Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.
Answer the following question:
Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis
Answer the following question:
Find the equation of the line passing through the points S(2, 1) and T(2, 3)
Answer the following question:
Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC
Answer the following question:
Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis
Answer the following question:
Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.
Answer the following question:
Find the Y-intercept of the line whose slope is 4 and which has X intercept 5
Answer the following question:
The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.
Answer the following question:
P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2
Answer the following question:
Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.
If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.
The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______
The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______
A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.
The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______
Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.
Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.