English

Find the equation of the line containing the origin and having inclination 60° - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the line containing the origin and having inclination 60°

Sum

Solution

Given, Inclination of line = θ = 60°

∴ Slope of the line (m) = tan θ = tan 60° = `sqrt(3)`

Equation of the line having slope m and passing through origin (0, 0) is y = mx.

∴ The equation of the required line is y = `sqrt(3)x`

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Exercise 5.3 [Page 114]

RELATED QUESTIONS

Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×