English

Obtain the equation of the line containing the point : B(4, –3) and parallel to the X-axis - Mathematics and Statistics

Advertisements
Advertisements

Question

Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis

Sum

Solution

Equation of a line parallel to X-axis is of the form y = k.

Since the line passes through B(4, –3),

k = –3

∴ The equation of the required line is y = –3.

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Exercise 5.3 [Page 114]

RELATED QUESTIONS

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line having slope `1/2` and containing the point (3, −2).


Find the equation of the line having inclination 135° and making X-intercept 7


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______ 


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×