मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Obtain the equation of the line containing the point : B(4, –3) and parallel to the X-axis - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis

बेरीज

उत्तर

Equation of a line parallel to X-axis is of the form y = k.

Since the line passes through B(4, –3),

k = –3

∴ The equation of the required line is y = –3.

shaalaa.com
Equations of Line in Different Forms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Straight Line - Exercise 5.3 [पृष्ठ ११४]

APPEARS IN

संबंधित प्रश्‍न

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line containing the origin and having inclination 60°


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


Find the equation of the line containing point A(4, 3) and having inclination 120°


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


Find the equation of the line having inclination 135° and making X-intercept 7


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the median AD


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______ 


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×