English

Answer the following question: The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides

Sum

Solution

Slope of side BC = (6-31-2)=(3-1) = – 3

∴ Slope of perpendicular bisector of BC is 13 and the line passes through (32,92).

∴ Equation of the perpendicular bisector of side BC is

(y-92)=13(x-32)

∴ 3(2y – 9) = (2x – 3)

∴ 6y – 27 = 2x – 3

∴ 2x – 6y + 24 = 0

∴ x – 3y + 12 = 0

Since both the points A and C have same x co-ordinates i.e. 1,

the points A and C lie on the line x = 1.

AC is parallel to Y-axis and therefore, perpendicular bisector of side AC is parallel to X-axis.

Since, the perpendicular bisector of side AC passes through E(1, 5).

∴ The equation of perpendicular bisector of side AC is y = 5.

Slope of side AB = (3-42-1) = – 1

∴ Slope of perpendicular bisector of AB is 1 and the line passes through (32,72).

∴ Equation of the perpendicular bisector of side AB is

(y-72)=1(x-32)

∴  2y – 7 = 2x – 3

∴ 2x – 2y + 4 = 0

∴ x – y + 2 = 0

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Miscellaneous Exercise 5 [Page 125]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 5 Straight Line
Miscellaneous Exercise 5 | Q II. (13) (c) | Page 125

RELATED QUESTIONS

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line containing the origin and having inclination 60°


Find the equation of the line having slope 12 and containing the point (3, −2).


Find the equation of the line containing point A(3, 5) and having slope 23.


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is xa+yb = 2


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The slope of normal to the curve x = t and y = t-1tat t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.